King Fahd University of Petroleum & Minerals

Department of Civil Engineering

CE 201 – Static

Semester: Examination: Date (Day): Time:

111 Final January 7, 2012 (Saturday) 07:30 – 10:30 a.m.

Section	1&6	2 & 5	3	4 & 13	7	8	9	10	11	12
Instructor	Tayyib	Mandil	Qahtani	Hussein	Chowdhury	Qadhib	Amoudi	Shamshad	Malack	Arifulzaman
Time	07:00 & 10:00	08:00 & 10:00	09:00	08:00 & 07:00	10:00	11:00	11:00	13:10	07:00	09:00
Tick										

Student	Name:	ID:

Problem	Assigned Grade	Earned Grade
1	20 (Points)	
2	25 (Points)	
3	25 (Points)	
4	15 (Points)	
5	15 (Points)	
Total	100 (Points)	

Good Luck

Problem 1 (20 Points)

For the Figure shown below:

- (15 Points) (a) Determine the horizontal and vertical components of the forces at pin E.
- (5 points) (b) Determine the internal normal force, shear force and bending moment at point G.

Problem 2 (25)

Draw the shear and moment diagrams for the ABC beam shown below.

Problem 3 (a) (10 Points)

Box A is connected to box B with a rope passing over a frictionless pulley, as shown in the Figure below. Box A weighs 100 kg and placed on a ramp inclined at 30° . The coefficient of static friction between box A and ramp is 0.30. Determine the minimum weight of box B required to prevent box A from sliding down on the ramp.

Problem 3 (b) (15 Points)

The 100 N uniform ladder (AB) is held in the position by the force P, as shown in the Figure below. Determine the smallest value of the force P needed to hold the ladder in equilibrium. The coefficient of static friction at A and B is 0.20.

Problem 4 (15 Points)

Determine the location of the centroid (\bar{x}, \bar{y}) of the given cross-sectional area. <u>Use the Table</u> below for the solution.

Problem 5 (15 Points)

Determine the moment of inertia of the area shown below about the x axis (I_x) and the y axis (I_y) . Use the Table below for the solution.

