King Fahd University of Petroleum & Minerals

Department of Civil and Environmental Engineering

CE 201 – Static

Semester:	112
Examination:	Final
Date (Day):	May 28, 2012 (Monday)
Time:	07:30 – 10:30 a.m.

Section	1 & 11	2 & 5	3	4	7 & 9	10 & 12	13
Instructor	Chowdhary	Mandil	Qahtani	Hussein	Malack	Arifulzaman	Sharif
Time	09:00 & 11:00	08:00 & 09:00	09:00	10:00	08:00 & 13:10	10:00 & 09:00	11:00
Tick							

Student's Name	:
Student's ID	:

Problem	Assigned Grade	Earned Grade
1	20 (Points)	
2	25 (Points)	
3	25 (Points)	
4	15 (Points)	
5	15 (Points)	
Total	100 (Points)	

Good Luck

Problem 1 (20 Points)

- (14 Points) 1. Determine the reactions on member *ABC* at *A* and *B*.
- (6 Points)2. Determine the internal shear force, normal force and bending moment at point *I* which is mid-way between points *B* and *E*.

Problem 2 (25 Points)

Draw shear and moment diagrams for beam ABC.

Problem 3 (25 Points)

Find the smallest force (P) required to cause impending motion in the two box assembly shown below.

 $Given \qquad W_A=300 \text{ N}, \qquad \mu_A=0.45$

 $W_B = 500 \text{ N}, \qquad \mu_B = 0.35$

Problem 4 (15 Points)

Determine the location of the centroid (\bar{x}, \bar{y}) of the shaded area shown in the figure.

Problem 5 (15 Points)

Determine the moment of inertia of the shaded area, shown in the figure, about the x-axis.

