

# **COE Continuous Improvement COMMITTEE**

# **Activity Report**

Term T182

## **COMPUTER ENGINEERING**

Program

at

King Fahd University of Petroleum & Minerals DHAHRAN, SAUDI ARABIA

May, 2019

## **Table of Contents**

| 1.   | Introduction    |                                                                     | 3 |
|------|-----------------|---------------------------------------------------------------------|---|
| 2.   | T182 Assess     | nent Results                                                        | 3 |
|      | 2.1             | SO 2 (Design) Assessment results                                    |   |
|      | 2.2             | SO 4 (Ethical and Professional Responsibility) Assessment results 4 |   |
|      | 2.3             | SO 6 (Experiment Design) Assessment results                         |   |
|      | 2.4             | SO 7 (Acquiring & Applying Knowledge) Assessment results            |   |
| Appe | endix : Rubrics | for Assessing SOs 2, 4, 6, and 7                                    | 7 |

#### Summary

This report gives a brief summary of the ABET related activities at the Computer Engineering Department in the academic term 182. The continuous improvement committee (CIC) has coordinated the assessment of four student outcomes (SOs 2, 4, 6, and 7). The CIC has been also involved with COE faculty who engaged the English Language department in trying to improve SO3 (communication skills). This was in response to the relatively low rubric scores for this outcome achieved by students in 181. The CIC continue to provide invaluable comments and suggestions to the curriculum revision committee to improve the curriculum and ensure it continues to provide quality engineering education that conform to the highest international standards.

### 1. Introduction

Table 1 below show ABET activities planned for the current accreditation cycle semester wise. Following the plan, the CIC arranged for the assessment of SOs **2**, **4**, **6**, and **7** in COE 300, COE 301 Lab, COE 306 Lab, COE 344 Lab, COE 351 (COOP), and COE 485 (Senior Project). Instructors of these courses were informed by the CIC at the beginning of T182 about the assessment of these SOs in their courses. They were given the assessment tools (Rubrics, please see the Appendix) and were asked to prepare assessment plans. These plans were reviewed, modified when necessary and ratified by the CIC. Instructors submitted their assessment results to the SO coordinators in the CIC, who in turn consolidated the assessment results for each SO. Section 2 of this report summarizes the assessment results for the four student outcomes that were assessed in T182 including a compilation of corrective actions that will be applied starting in T191.

 Table 1: Planned CIC activities for the current ABET accreditation cycle (151-202).

| Term     | 151    | 152  | 161        | 162    | 171  | 172           | 181        | 182        | 191   | 192    | 201        | 202        |
|----------|--------|------|------------|--------|------|---------------|------------|------------|-------|--------|------------|------------|
| CIC      | Correc | tive | SO b, c, k | Curric | ulum | SO i, j, f, h | SO 1,3, 5  | SO 2,4,6,7 | Corre | ective | SO 1,3,5   | SO 2,4,6,7 |
| Activity | Actio  | ns   | assessment | revis  | ion  | assessment    | assessment | assessment | acti  | ons    | assessment | assessment |

#### 2. T182 Assessment Results

The COE department adopts the following criteria for judging a student's achievement of an outcome based on rubric scores (out of 4):

- Achieved (A): Score > 2.5,
- Marginally Achieved (M): Score:  $\approx 2.5$
- Need Improvement (NI): Score < 2.5

An important measure used to evaluate the overall achievement of a certain student outcome is the percentage of students who achieved 60% (i.e. 2.5/4) or more in the rubrics. This determines the urgency of corrective actions; any percentage less than 70% (i.e. if less than 70% of the students failed to score 60% or more in the rubrics) warrant corrective actions. We also keep an eye on the maximum and minimum rubric scores; larger spread is indicative of either an outcome delivery/injection problem, an assessment problem, or both.

## 2.1 SO 2 (Design) Assessment results OUTLINE OF THE ASSESSMENT METHOD

SO 2 was assessed in the COE 351 COOP and COE 485 based on final reports and presentations. There are explicit sections in the final report of these two courses as well as evidence throughout the report as well as the final presentations and demos (when students describe their tasks and what they had to learn to perform them).

Table 2 below summarize the assessment results for SO 2 (Design).

| Outcome Performance Indicator  | Avg. | Min. | Max. | Std.<br>Dev. |
|--------------------------------|------|------|------|--------------|
| 1. Requirements (User's Needs) | 3.05 | 2.50 | 4.00 | 0.50         |
| 2. Approach Selection          | 2.76 | 1.50 | 3.00 | 0.45         |
| 3. System Design               | 2.65 | 1.50 | 3.00 | 0.50         |
| 4. Detailed Design             | 2.63 | 1.50 | 3.00 | 0.55         |
| 5. Prototyping                 | 2.68 | 2.00 | 3.50 | 0.60         |
|                                | 2.74 | 1.50 | 4.00 | 0.50         |

#### Table 2: Assessment results for SO 2 in T182 (Design).

#### **OBSERVATIOSN AND RECOMMENDATIONS**

The following are observations on the assessment results:

- Though this outcome is satisfactory achieved, it represents a clear path for improvement. Students seem to suffer in later stages of a project design.
- This batch of students seems to be worse than previous batches (as evident from the course grades).

#### SUGGESTIONS FOR CORRECTIVE ACTIONS

• Students should get more orientation on how to conduct later stages of a project design before they leave for COOP training. Hopefully, this will also carry them through to the senior design project.

The overall assessment for this SO is: Satisfactory.

#### 2.2 SO 4 (Ethical and Professional Responsibility) Assessment results

Table 3 below summarizes the assessment results of SO *4* (from COE 300, COE 351, and COE 485 courses) along with the observations and suggested corrective actions by the course instructors.

| Outcome Performance Indicator                                                      | Avg. | Min. | Max. | Std.<br>Dev. |
|------------------------------------------------------------------------------------|------|------|------|--------------|
| 1. Awareness of global effects of engineering solutions (product, practice, event) | 2.53 | 1.0  | 3.50 | 0.50         |
| 2. Understanding of ethical and professional issues                                | 2.57 | 1.0  | 4.00 | 0.45         |
| <b>3.</b> Awareness of Contemporary issues (Social, Economic, Political, others)   | 2.70 | 2.0  | 4.00 | 0.50         |
|                                                                                    | 2.60 | 1.0  | 4.00 | 0.50         |

#### Table 3: Assessment results for SO 4 in T182 (Ethical and Professional Responsibility).

#### **OBSERVATIOSN AND RECOMMENDATIONS**

The following are observations on the assessment results:

- This outcome is barely achieved. Students, especially in COE 300 had problems in every indicator of the rubrics. This batch of students was significantly below the average.
- Senior students (in COE 351 and COE 485) seems to have better grasp of this outcome which indicates that students improve at this outcome as they proceed up the program.

#### SUGGESTIONS FOR CORRECTIVE ACTIONS

- Possibly include a couple of slides about this outcome in the COE 300 course notes and point out to students where they can find more information.
- Keep the students up to date with the global and contemporary issues. Advise them about reliable and good sources of articles and/or media for a thorough and up-to-date coverage of these issues in computing and engineering. Probably recommend reliable and trusted social media accounts for the same purpose.

The overall assessment for this SO is: Satisfactory.

## 2.3 SO 6 (Experiment Design) Assessment results

Table 4 below summarizes the assessment results of SO 6 (from COE 301 and COE 306 labs) along with the observations and suggested corrective actions by the course instructors. This outcome was also supposed to be assessed in the COE344 lab, but the lab instructor did not properly collect the assessment data and as such will be carried out again in 191.

| Outcome Performance Indicator                                                                                    | Avg. | Min. | Max. | Std.<br>Dev. |
|------------------------------------------------------------------------------------------------------------------|------|------|------|--------------|
| 1. Pre-Experiment: Identifying clear goals for the experiment –<br>Hypothesis testing, Knowledge Discovery, etc. | 3.10 | 2.0  | 4.0  | 0.85         |
| 2. Designing a valid and appropriate experimental setup that achieve the experiment objectives.                  | 2.95 | 2.0  | 4.00 | 0.85         |
| <b>3.</b> Conducting the experiment using a well-defined valid procedure for achieving the experiment result.    | 3.05 | 2.0  | 4.00 | 0.85         |
| 4. Analyzing and interpreting data and drawing conclusions.                                                      | 2.50 | 1.0  | 4.00 | 1.0          |
|                                                                                                                  | 2.95 | 1.0  | 4.00 | 0.88         |

#### Table 4: Assessment results for SO 6 in T182 (Experimental Design).

#### **OBSERVATIOSN AND RECOMMENDATIONS**

The following are observations on the assessment results:

• In general, this outcome is considered achieved by the majority of students, however, there seems to be weakness in "making conclusions" after analyzing the collected data.

## **Suggested Corrective Actions:**

• The importance of "making sense of data" needs to be stressed. In the courses used, instructors should launch an inquiry to find out the reasons behind such weakness and formulate a proper corrective action.

The overall assessment for this SO is: Achieved.

## 2.4 SO 7 (Acquiring & Applying Knowledge) Assessment results

Table 5 below summarizes the assessment results of SO 7 (from COE 300 and COE 485 courses) along with the observations and suggested corrective actions by the course instructors.

| Table 5: Assessment results for SO 7 | in T182 (Acquiring & Applying Knowledge). |
|--------------------------------------|-------------------------------------------|
|                                      |                                           |

| Outcome                                                                                                                                    | Avg. | Min. | Max. | Std.<br>Dev. |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------------|
| 1. Capable of recognizing the need for learning new knowledge to solve an engineering problem.                                             | 3.01 | 2.00 | 3.50 | 0.42         |
| 2. Capable of using appropriate learning strategies to acquire new knowledge, and applying this knowledge to solve an engineering problem. | 3.15 | 2.50 | 4.00 | 0.38         |
|                                                                                                                                            | 3.1  | 2.00 | 4.00 | 0.40         |

### **OBSERVATIOSN AND RECOMMENDATIONS**

The following are observations on the assessment results:

• Though this outcome is well achieved, almost all students recognize that they need to learn on their own and do it mainly using Google!

## **Suggested Corrective Actions:**

• Students need to be introduced to more sources of information in the COE courses (journals, magazines, etc.).

The overall assessment for this SO is: Achieved.

Student Outcome (2) Rubric: Ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

| Performance<br>Indicator                                                                                                                        | <b>Score</b> (1 - 4) | Exemplary (4)                                                                                                                                                                                                                                            | Proficient (3)                                                                                                                                                                                                                   | Apprentice (2)                                                                                                                                                                                                    | Novice (1)                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requirements المتطلبات<br>(user's needs)<br>& Specifications<br>(what<br>designers need to<br>target)<br>Are properly<br>identified and stated. |                      | Requirements are clear and<br>represent all stakeholders'<br>needs (users, public,<br>environment etc.)<br>Properly translated to<br>specifications (system, sub-<br>systems) with adequate<br>precision/resolution                                      | Requirements are mostly<br>correct but missing some<br>non-user requirements (e.g.<br>missing health, environment,<br>legal requirements)<br>Translated into right specs<br>with minor errors in<br>precision and/or resolution. | Some requirements are<br>stated but many are<br>missing, some<br>vagueness. No<br>consideration of non-user<br>requirements. The specs<br>are incomplete with<br>many requirements not<br>mapped to any spec.     | Very few requirements,<br>mostly vague and<br>incomplete, some design<br>decisions appear in the<br>requirements (shows<br>misunderstanding), specs<br>are not directly relatable to<br>requirements. |
| Approach Selection                                                                                                                              |                      | All possible approaches are<br>identified, properly analyzed<br>(Pros * Cons) and the most<br>suitable one selected with<br>proper justification (using<br>appropriate decision<br>criteria). Criteria include<br>economic (cost), and other<br>factors. | Most possible approaches<br>are identified and analyzed.<br>The selection process does<br>not give clear (convincing<br>justification) or incomplete<br>criteria are used in the<br>decision making process.                     | Some possible<br>approaches are<br>identified. Student<br>recognize that the<br>selection should follow a<br>certain process but chose<br>inappropriate criteria or<br>use flawed logic to make<br>the selection. | Only one approach is<br>identified and selected with<br>almost no decision making<br>process.                                                                                                         |
| System Design                                                                                                                                   |                      | System's behavior is<br>correctly identified and<br>documented, system's<br>architecture is properly<br>developed and documented,<br>and a proper physical<br>deployment of the system is                                                                | System's behavior is<br>correctly identified and<br>documented, some system's<br>architecture is proposed but<br>is not ideal or more of a<br>structural view of the system,<br>the proposed physical                            | System's behavior is<br>missing some <i>minor</i> use<br>cases (other than the<br>main use cases), no<br>architectural view just<br>physical deployment<br>representation,                                        | System's behavior is<br>missing some <i>major</i> use<br>cases, no architectural<br>view, the physical<br>deployment is missing<br>major components or very<br>naive, almost no                       |

|                 | devised to satisfy all<br>requirements and<br>specifications.                                                                                                                                                                                                                                                                                          | deployment of the system is<br>not satisfying some of<br>requirements and<br>specifications.                                                                                                                                                                                                                                                                                                      | documentation is incomplete.                                                                                                                                                                                                                                                                                                                       | documentation or incomplete documentation.                                                                                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detailed Design | Requirements and system<br>specs are properly translated<br>to component specs,<br>components design/selection<br>follows best known methods<br>(proper design decisions),<br>proper tools are used for the<br>design and verification of<br>components. All relevant<br>standards are considered and<br>properly taken into account<br>in the design. | Requirements and system<br>specs are translated to<br>component specs but some<br>specs are missing,<br>components design/selection<br>follows best known methods<br>except for some components<br>(e.g. unjustified decisions or<br>mistakes), proper tools are<br>used for the design but<br>lacking in verification of<br>components. Some but not<br>all standards are taken into<br>account. | Components are<br>designed/selected in an<br>ad-hoc trial and error<br>manner (specs are not<br>derived beforehand).<br>Inferior design<br>techniques, little use of<br>tools or use of improper<br>tools leading to design<br>mistakes, no verification,<br>some evidence of<br>following standards but<br>no mention of standards<br>compliance. | Very little design of<br>components. Missing<br>components, little or no use<br>of tools at all no evidence of<br>understanding standards at<br>all. |
| Prototyping     | Proper integration of all<br>components, prototype is a<br>truthful representation of the<br>end product (almost<br>production quality), proper<br>emulation of non-available<br>components, proper<br>documentation and<br>demonstration of final<br>prototype.                                                                                       | Proper integration of most<br>components, prototype<br>contains more emulated<br>components than it should<br>but still a truthful<br>representation of the end<br>product, not all use cases are<br>properly documented and<br>demonstrated.                                                                                                                                                     | Little integration<br>(prototype is made of<br>disjoint systems that are<br>demonstrated<br>separately), many<br>unnecessarily emulated<br>components, prototype is<br>far from the end product,<br>poor documentation.                                                                                                                            | No prototype, just some<br>demonstrated components,<br>poor documentation.                                                                           |

Student Outcome (4) Rubric: Ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

| Performance<br>Indicator                                                                 | Score (1 - 4) | Exemplary (4)                                                                                                                                                                                                           | Proficient (3)                                                                                                                            | Apprentice (2)                                                                                                                          | Novice (1)                                                                                                         |
|------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Awareness of global<br>effects of engineering<br>solutions (product,<br>practice, event) |               | Deep understanding of the<br>immediate and long-term<br>issues involving the solution<br>on users and non-users<br>locally and globally                                                                                 | Good understanding of the<br>widespread effects of the<br>solution but with somewhat<br>limited perspective about<br>long-term factors    | Some awareness of the<br>more extended effects of<br>the solution                                                                       | Seems to have considered<br>only effects on immediate<br>users                                                     |
| Understanding of<br>ethical and<br>professional issues                                   |               | Deep understanding of the<br>professional issues involved<br>and the ethical implications<br>of the solution; careful,<br>convincing analysis of all<br>relevant factors                                                | Good understanding of all<br>the professional/ethical<br>issues related to the solution;<br>reasonable analysis of the<br>relevant issues | Some consideration of<br>professional, ethical<br>issues raised directly by<br>the solution                                             | Little or no understanding<br>of professional/ethical<br>issues even where there are<br>serious questions involved |
| Awareness of<br>Contemporary issues<br>(Social, Economic,<br>Political, others)          |               | Deep understanding and<br>good analysis of ALL<br>relevant issues and how they<br>might impact the general<br>acceptance of the solution<br>and how this might affect the<br>future development of<br>similar solutions | Good understanding of<br>directly relevant<br>contemporary issues to the<br>creation and use of the<br>solution.                          | Moderate understanding<br>of the main relevant<br>contemporary issues<br>directly related to the<br>creation and use of the<br>solution | Little understanding of<br>contemporary issues<br>directly related to the<br>creation and use of the<br>solution   |

# Outcome (6) Rubric: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

| Outcome                                                                                                                   | Score<br>(1 - 4) | Exemplary (4)                                                                                                                                                                   | Proficient (3)                                                                                                                                                                                                                                  | Apprentice (2)                                                                                                                                                          | Novice (1)                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Experiment:<br>Identifying clear goals<br>for the experiment –<br>Hypothesis testing,<br>Knowledge Discovery,<br>etc. |                  | Experiment objectives are clear<br>and well articulated, expected<br>results, and possible pitfalls of the<br>experiment                                                        | Identifies most of the objectives of the<br>experiment and some of the expected<br>results but does not state possible<br>pitfalls                                                                                                              | Identifies some of the objectives of the experiment but omits the expected results and possible pitfalls.                                                               | Does not identify any objectives<br>for the experiment and/or<br>expected results                                                                             |
| Designing a valid and<br>appropriate<br>experimental setup that<br>achieve the experiment<br>objective                    |                  | Designs a fully valid testbed<br>suitable for achieving the objectives<br>with proper justification                                                                             | Designs a valid testbed suitable for<br>achieving the objectives with some<br>justification                                                                                                                                                     | Designs a testbed that<br>partially achieve the<br>objectives without enough<br>justification                                                                           | Fails to designs a valid testbed for achieving the objectives                                                                                                 |
| Conducting the<br>experiment using a well<br>defined valid procedure<br>for achieving the<br>experiment result            |                  | Conducts the experiment with no<br>flaws at all, all procedural steps are<br>correct, documented and justified,<br>observations are recorded<br>appropriately.                  | Conducts the experiment with some<br>minor errors that do not affect the<br>objectives significantly, procedural<br>steps are mostly <i>correct</i> , and<br>documented but not fully justified,<br>observations are recorded<br>appropriately. | Conduct the experiment with<br>some errors that affect the<br>results and the objectives                                                                                | Conduct the experiment with<br>major conceptual or procedural<br>errors that render the results<br>useless and leave the objectives<br>unachieved             |
| Analyzing and<br>interpreting data and<br>drawing conclusions                                                             |                  | Analysis, visualization,<br>interpretation of results, and<br>conclusions exceed requirements of<br>experiment and demonstrate<br>significant higher-order thinking<br>ability. | Analysis, interpretation of results,<br>and conclusions meet requirements of<br>experiment and demonstrate good<br>thinking ability                                                                                                             | Results are analyzed but not<br>interpreted; conclusions are<br>drawn but not well<br>supported, very limited<br>evidence of higher-order<br>thinking ability was shown | No evidence of significant<br>analysis and interpretation of<br>results; fail to make proper<br>conclusions; demonstrate only<br>lower-level thinking ability |

| Performance<br>Indicator                                                                                                                                                | Score<br>(1 - 4) | Exemplary (4)                                                                                                                                                                                                                                                                                                                                                                                                       | Proficient (3)                                                                                                                                                                                                                                                                                                                                                                                                        | Apprentice (2)                                                                                                                                                                                                                                                                                                                                                                                                                  | Novice (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capable of<br>recognizing<br>the need for<br>learning new<br>knowledge to<br>solve an<br>engineering<br>problem                                                         |                  | • The student is <u>fully</u> aware<br>of the exact knowledge<br>that he lacks and that is<br>needed to solve an<br>engineering problem.                                                                                                                                                                                                                                                                            | • The student is <u>mostly</u><br>aware of the exact<br>knowledge that he lacks<br>and that is needed to solve<br>an engineering problem.                                                                                                                                                                                                                                                                             | • The student is <u>partially</u><br>aware of the exact<br>knowledge that he lacks<br>and that is needed to solve<br>an engineering problem.                                                                                                                                                                                                                                                                                    | • The student is <u>unable</u> to<br>recognize the exact<br>knowledge that he lacks<br>and that is needed to solve<br>an engineering problem.                                                                                                                                                                                                                                                                                                                                                                                      |
| Capable of<br>using<br>appropriate<br>learning<br>strategies to<br>acquire new<br>knowledge,<br>and applying<br>this knowledge<br>to solve an<br>engineering<br>problem |                  | <ul> <li>The student is <u>fully</u> capable of using appropriate learning strategies (such as reading textbooks or technical magazines/journals, watching video tutorials, interacting with technical forums,) to acquire the new knowledge that is needed to solve an engineering problem.</li> <li>The student <u>correctly</u> applies the newly acquired knowledge to solve an engineering problem.</li> </ul> | <ul> <li>The student is mostly capable of using appropriate learning strategies (such as reading textbooks or technical magazines/journals, watching video tutorials, interacting with technical forums,) to acquire the new knowledge that is needed to solve an engineering problem.</li> <li>The student applies the newly acquired knowledge to solve an engineering problem but makes minor mistakes.</li> </ul> | <ul> <li>The student is <u>partially</u> capable of using appropriate learning strategies (such as reading textbooks or technical magazines/journals, watching video tutorials, interacting with technical forums,) to acquire the new knowledge that is needed to solve an engineering problem.</li> <li>The student applies the newly acquired knowledge to solve an engineering problem but makes major mistakes.</li> </ul> | <ul> <li>The student is <u>incapable</u><br/>of using appropriate<br/>learning strategies (such<br/>as reading textbooks or<br/>technical<br/>magazines/journals,<br/>watching video tutorials,<br/>interacting with technical<br/>forums,) to acquire the<br/>new knowledge that is<br/>needed to solve an<br/>engineering problem.</li> <li>The student is <u>either</u><br/><u>incapable of applying or</u><br/><u>incorrectly applies</u> the<br/>newly acquired<br/>knowledge to solve an<br/>engineering problem.</li> </ul> |

Student Outcome (7) Rubric: An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.