One-Year Professional Interdisciplinary Master Program in Robotics and Autonomous Intelligent Systems
All candidates for the One-Year Professional Interdisciplinary Master Program in Robotics and Autonomous Intelligent Systems must satisfy the overall requirements of KFUPM in addition to the following:
The applicant should have an accredited bachelor's degree or its equivalent degree in Aerospace Engineering, Mechanical Engineering, Electrical/Electronic Engineering, Computer Engineering, System Engineering, Mathematics, Computer Science, Software Engineering, Mechatronic Engineering, or discipline relevant to the program content. The applicant should have prior background in a basic control theory like CISE 305 or AE 313 or EE 380 or ME 410 or CHE 401 or equivalent. Otherwise, he could be requested to take a related deficiency course.
The Master program consists of 8 core courses from different disciplines that cover four domains: Perception, Cognitive, Action, and Mathematics Foundations.
Core Courses
Sr. | Course Code and Title |
1 | AE 581: Introduction to Robotics & Autonomous Systems |
2 | SCE 575: Applied Control for Robotic Systems |
3 | SCE 576: Path Planning and Navigation for Mobile Robot |
4 | COE 510: Programming Methods for Robotics
|
5 | COE 511: Multi-agent Robotic Networks |
6 | COE 512: Sensing and Actuation for Intelligent Robots |
7 | ICS 520: Artificial Intelligence and Machine learning for Robotics |
8 | SCE 578: Human-Robot Interaction
|
In addition, the student must finish a final project during the last two semesters. The final project will be completed under the program affiliated faculty supervision and will integrate the skills acquired from the core courses to work on robotics related subjects.
In case, concentration students join this program, the common courses between the two programs cannot be taken for credit for both programs. Therefore, those students should take instead elective courses from the approved list below, as follows: two courses from the core elective courses list and two from the free elective courses list.
Core Elective Courses
Graduate | Undergraduate | Title | Prerequisites |
SCE 564
| | Decision Making Under Uncertainty | Graduate Standing |
| AE 449
| Fundamentals of Unmanned Aerial Systems | MATH 202, PHYS 102 |
COE 526
| | Data Privacy | Graduate Standing |
ICS-504
| | Deep Learning | Graduate Standing |
Free Electives Courses
Graduate | Undergraduate | Title | Prerequisites |
MATH 517
| | Introduction to Data Science | Graduate Standing |
SEC 511
| | Principles of Information Assurance and Security | Graduate Standing |
SEC 521
| | Network Security | Graduate Standing |
COE 543
|
| Mobile Computing and Wireless Networks | Graduate Standing
|
COE 545
| | Wireless Sensor Networks | Graduate Standing |
ICS 515
| ICS 483
| Computer Vision |
|
Course Description
AE 581: Introduction to Robotics & Autonomous System (3-0-3) Introduction to the fundamentals of mobile robots, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. Overview of the mechanisms for locomotion, dynamic modeling, forward and inverse dynamics, sensing. Concepts of localization and motion planning control theory, signal analysis, computer vision. Prerequisites: Graduate Standing, cannot be taken for credit with CISE 480 or AE 449 |
COE 510: Programming Methods for Robotics (3-0-3) Introduction to the key elements of robotics programming. Key skills in implementing robotic software for real-time systems. Robot programming methods using ROS (Robot Operating System) including creating ROS service servers, implementing ROS nodes, communication between ROS nodes, ROS data structures. Simulation of robotics systems, such as SLAM using ROS frameworks. Hands-on experience in using ROS for programming ground robots and UAVs. Prerequisites: Graduate Standing |
COE 511: Multi-agent Robotic Networks (3-0-3) Principles of algebraic graph theory. Ad hoc networks: IoT and sensor network enabling technologies, Machine to Machine (M2M) routing protocols, Network topology, connectivity maintenance, fault-tolerance, and coverage> Autonomous multi-robot systems formations, maintenance, and control. Building a network of robots to achieve a common goal, e.g., cooperative Simultaneous Localization and Mapping (SLAM). Case studies. Prerequisites: AE 581 |
COE 512: Sensing and Actuation for Intelligent Robots (3-0-3) Integration of computational intelligence with advanced sensors and actuators for robotic systems perception. Computer vision, robot perception and place recognition, feature extraction, vision object tracking, and obstacle avoidance. Data acquisition and control, robotic system integration. Basic topics in micro-electro-mechanical systems (MEMS) and smart materials sensing and actuation. Prerequisites: Graduate Standing |
ICS 520: Artificial Intelligence and Machine learning for Robotics (3-0-3) Application of Artificial Intelligence (AI) and Machine Learning (ML) for robotic systems. Intelligent Agents (IA), blind/uninformed and informed search algorithms for path planning. Relational and associative navigation, behavior coordination, uncertainty, and probabilistic reasoning. knowledge representation methods. Different types of IA architectures (operational, systems, and technical) and layers (behavioral, deliberative, interface) within a canonical operational architecture of an intelligent robot. Logical agents, deductive and practical reasoning agents, reactive and hybrid agents, rational agents, and how to use such techniques for creating autonomous robots/agents. Fundamentals and practical usage of Machine Learning (ML) algorithms, including supervised, unsupervised, reinforcement, and evolutionary learning paradigms for implementing autonomous robots/agents. Prerequisites: Graduate Standing, cannot be taken for credit with CISE 483 |
SCE 575: Applied Control for Robotic Systems (3-0-3) The interplay between control and robotics. Kinematic and dynamic models of robot manipulators, mobile robots, and multi-rotor drones, design intelligent controls for robotic systems and explore modeling analogies between these systems. Learn basic linear/nonlinear, single and multiple input/output closed-loop control, Introduction to stability theories, feedback linearization, and robust control design. Basic system identification techniques and the concept of autopilot design for aircraft and UAVs. Prerequisites: AE 581, cannot be taken for credit with CISE 481 |
SCE 576: Path Planning and Navigation for Mobile Robot (3-0-3) Key concepts, algorithms, and design of robot motion and navigation in the presence of obstacles and static and dynamic environments with uncertainty. Real-time feedback control to track the planned motion, C-space obstacles, grid-based motion planning, randomized sampling-based planners, and virtual potential fields. Motion and force control, flying robot trajectory design, UAV's trajectory. Prerequisites: AE 581, cannot be taken for credit with CISE 482 |
SCE 578: Human-Robot Interaction (3-0-3) Principles, methodologies, and algorithms in Human-Robot-Interaction (HRI) such as HRI design methods, cognition, and visual perception, thinking, and actions, autonomy, shared control, remote presence, robot learning, task planning, attention, priming, trust, acceptance, motion control for HRI. Verbal and nonverbal interaction (i.e. speech recognition, natural language understanding, robot gaze, eye movement, touch, gesture and facial recognition, emotion and intention recognition, etc.). Sources of uncertainty in HRI, and ethical considerations for HRI by bringing together knowledge from robotics, artificial intelligence, human-computer interaction, cognitive psychology, etc. Computational models of social intelligence, physical embodiment, mixed-initiative interaction, multi-modal interfaces, human-robot teamwork, robot learning from humans, aspects of social cognition, and long-term interaction. Prerequisites: COE 512 and ICS 520 |
COE 619: Project (0-0-6) A graduate student will arrange with a faculty member to conduct an industrial research project related to the robotics and autonomous intelligent systems field of the study. Subsequently, the students shall acquire skills and gain experience in developing and running actual industry-based projects. This project culminates in the writing of a technical report, and an oral technical presentation in front of a board of professors and industry experts. Prerequisites: AE 581, COE510, ICS520, and COE 512
|
Degree Plan
First Semester |
Course #
| Title | LT | LB | CR |
AE 581
| Introduction to Robotics & Autonomous Systems | 3 | 0 | 3 |
COE 510
| Programming Methods for Robotics | 3 | 0 | 3 |
COE 512
| Sensing and actuation for intelligent robots | 3 | 0 | 3 |
ICS 520
| Artificial Intelligence and Machine learning for Robotics | 3 | 0 | 3 |
Credit Hours
| 12 | 0 | 12 |
Second Semester |
Course #
| Title | LT | LB | CR |
SCE 575
| Applied Control for Robotic Systems | 3 | 0 | 3 |
SCE 576
| Path Planning and Navigation for Mobile Robot | 3 | 0 | 3 |
COE 511
| Multi-agent Robotic Networks | 3 | 0 | 3 |
COE 619
| Project | 0 | 0 | IP |
Credit Hours
| 9 | 0 | 9 |
Summer Semester
|
Course #
| Title
| LT
| LB
| CR
|
SCE 578
| Human Robot Interaction | 3 | 0 | 3 |
COE 619
| Project (continued) | 0 | 0 | 6 |
Credit Hours
| 3 | 0 | 9 |
Total Credit Hours
| | | 30 |
Flow Chart

Degree Plan for Master in Robotics and Autonomous Intelligent Systems.pdf
Flow Chart-Master in Robotics and Autonomous Intelligent Systems.pdf