King Fahd University of Petroleum and Minerals Department of Mathematics

Math 323 (Term 212) Midterm Exam (Duration = 120 minutes)

Exercise 1 (6 points). Answer the following questions and justify your answers.

- (a) Is $\left(\frac{\mathbb{Z}}{6\mathbb{Z}}\right)^{\star}$, under multiplication, a group?
- **(b)** Is the group $(\mathbb{Q}, +)$ cyclic?
- (c) Is there an integer $n \ge 3$ such that the symmetric group S_n is abelian?

Exercise 2 (6 points). Let *G* be a group of order n = pqr, where $p \le q \le r$ are prime numbers. Let *H* be a *proper* subgroup of *G* such that $\exists a, b \in H \setminus \{1\}$ with $|a| \ne |b|$. Find, all possible values for |H|.

Exercise 3 (6 points). Let $G := \frac{\mathbb{Z}}{n\mathbb{Z}}$, where n = pqr and $2 \le p \le q \le r$ are prime numbers. Let $H = \langle \overline{m} \rangle$ be a subroup of G of order pq such that $1 < m \le n - r$. Find the largest possible value for m.

Exercise 4 (6 points). Let S_{12} denote the symmetric group of degree 12 and let $\sigma \in S_{12}$ with $\sigma = \alpha_1 \alpha_2 \cdots \alpha_k$ where the α_i 's are disjoint r_i -cycles such that $r_i \geq 4$, for each i, and $r_1 + r_2 + \cdots + r_k = 12$. Determine all possible values for the order of σ and, for each case, state whether σ is even or odd.

Exercise 5 (6 points). Draw the lattice of all subgroups of $\frac{\mathbb{Z}}{66\mathbb{Z}}$ with all possible inclusions between subgroups and, for each subgroup, give its generator and order.

Exercise 6 (10 points). Let $G = \frac{\mathbb{Z}}{p^2 \mathbb{Z}} \times \frac{\mathbb{Z}}{p \mathbb{Z}}$, where p is a prime number. Find the number of elements of G of order p.

Exercise 7 (10 points). Let G = U(66) be the multiplication group modulo 66.

- (a) Determine the isomorphism class of *G*.
- **(b)** Express *G* as an internal direct product of cyclic groups.

[In *G*, we have: 5^2 , 5^3 , 5^4 , 5^5 , 5^6 , 5^7 , 5^8 , 5^9 , $5^{10} = 25$, 59, 31, 23, 49, 47, 37, 53, 1, respectively; 17^2 , 17^3 , 17^4 , 17^5 , 17^6 , 17^7 , 17^8 , 17^9 , $17^{10} = 25$, 29, 31, 65, 49, 41, 37, 35, 1, respectively; $23^2 = 43^2 = 65^2 = 1$.]

Exercise 8 (10 points). Show that Q, under addition, has no proper subgroup of finite index

Exercise 9 (20 points). Let *G* be a *non-trivial* finite group. Consider the *equivalence relation R* defined on *G* by xRy if $y = gxg^{-1}$ for some $g \in G$. For each $x \in G$, let cl(x) denote the equivalence class of x and let C(x) denote the centralizer of x. That is, $cl(x) := \{gxg^{-1} \mid g \in G\}$ and $C(x) := \{g \in G \mid gx = xg\}$.

- (a) Prove that |cl(x)| = |G:C(x)| for each $x \in G$.
- **(b)** Show that $|G| = \sum_{x \in G} |G:C(x)|$, where the sum runs over *one* representative x of cl(x).
- (c) Show that $x \in Z(G)$ if and only if |G:C(x)| = 1.
- (d) Assume $|G| = p^n$, where p is a prime number and $n \ge 1$. Prove that Z(G) is NOT trivial.
- (e) Deduce from (d) that if $|G| = p^2$, then G is abelian.