MATH 531 - Major Exam $2\,$

KFUPM, Department of Mathematics and Statistics

Kroumi Dhaker, Term 212

1 Exercise 1(20 points)

Let f be integrable over \mathbb{R} .

- 1. Show that f is uniformly integrable over \mathbb{R} .
- 2. Let F be the function defined by $F(x) = \int_{-\infty}^{x} f$. Show that F is well-defined and continuous.

2 Exercise 2(15 points)

Assume $m(E) < \infty$. For two measurable functions g and h on E, define

$$\rho(g,h) = \int_E \frac{|g-h|}{1+|g-h|}.$$

Show that $\{f_n\} \to f$ in measure on E if and only if $\lim_{n \to \infty} \rho(f_n, f) = 0$.

3 Exercise 3(10 points)

Let f be of bounded variation on [a,b] such that $|f| \ge c$ on [a,b], where c > 0 is constant. Show that $\frac{1}{f}$ is of bounded variation on [a,b].

4 Exercise 4(15 points)

Show that a continuous function on (a,b) is convex if and only if $\varphi\left(\frac{x_1+x_2}{2}\right) \leq \frac{\varphi(x_1)+\varphi(x_2)}{2}$ for all $x_1,x_2\in(a,b)$.

5 Exercise 5(15 points)

A real-valued function f defined on [a,b] is said to be K-Lipschitz if

$$|f(y) - f(x)| \le k|y - x| \text{ for all } x, y \in [a, b].$$

Show that f is K-Lipschitz if and only if i) f is absolutely continuous on [a,b] and ii) $|f'(x)| \leq K$ a.e. on [a,b].

6 Exercise 6(15 points)

Let f be integrable over \mathbb{R} . Show that the following assertions are equivalent

- 1. f = 0 a.e. on \mathbb{R} .
- 2. $\int_{\mathbb{R}} fg = 0$ for every bounded measurable function g on \mathbb{R} .
- 3. $\int_A f = 0$ for every measurable set A.
- 4. $\int_O f = 0$ for every open set O.

7 Exercise 7(10 points)

Identify which of the following statements is true and which is false. If a statement is true, give reason. If a statement is false, provide a counterexample.

- 1. Define $f(x) = \begin{cases} x^2 \sin(1/x) & \text{if } x \in (0,1], \\ 0 & \text{if } x = 0. \end{cases}$ Then f is of bounded variation on [0,1]
- 2. If $\{f_n\} \longrightarrow f$ pointwise on E, then $\{f_n\} \longrightarrow f$ in measure on E.