About this Bulletin

The Undergraduate Bulletin of King Fahd University of Petroleum and Minerals (KFUPM) is an official publication issued by the Office of the Vice Rector for Academic Affairs. Undergraduate programs are revised periodically and new ones are introduced. This updated Bulletin is part of a regular exercise carried out by the University to document these changes and make them available to students, faculty, and the public. It provides information on faculty, services, academic programs and requirements, and academic regulations. In addition to the hard documents of the Bulletin, a continuously updated soft version is available on the University website at http://regweb.kfupm.edu.sa.

Dr. Rajai S. Alassar
Editor, KFUPM Undergraduate Bulletin
September 2015

ACKNOWLEDGEMENTS

The editor acknowledges the generous support provided by the Vice Rector for Academic Affairs of the University, Dr. Mohammad S. Al-Homoud. The editor also expresses his appreciation to the former Vice Rector for Academic Affairs, Dr. Abdulaziz Al-Suwaiyan under whose supervision this task was first started. This assignment could not have been accomplished without the cooperation received from the University Deans and Chairmen, the Registrar, and all other Departments involved. Mr. Mohammed Abdul Azeem Siddiqui is thanked for providing the relevant University Council decisions and coordination with various departments at KFUPM. The production of this Bulletin in its final form is the work of KFUPM Press.
FOREWORD

King Fahd University of Petroleum & Minerals (KFUPM) is pleased to present the new Undergraduate Bulletin, which reflects its commitment to continuously update its academic programs to cope with global changes and respond to the needs of the Kingdom of Saudi Arabia. The Bulletin gives description of the academic programs being offered at the University. It includes the degree plans, degree requirements, course descriptions and graduation requirements. In addition, it lays out the policies, procedures and student services at the University in effect at the time of publication. It serves as a firsthand source of information for undergraduate students, faculty and administrators. Prospective students and stakeholders can also benefit from the Bulletin to gain an understanding of the University’s academic programs and policies.

The Bulletin also reveals the adoption of various accreditations of the programs being offered at KFUPM by national and international accrediting agencies to ensure quality education. At the time of this publication, KFUPM is proud that all its undergraduate programs are accredited or in the final stages of accreditation. The programs accredited by the Accreditation Board of Engineering & Technology (ABET) http://www.abet.org/ are as follows:

Engineering Accreditation Commission

- Aerospace Engineering (BS)
- Applied Aerospace Engineering (BS)
- Applied Chemical Engineering (BS)
- Applied Civil Engineering (BS)
- Applied Electrical Engineering (BS)
- Applied Mechanical Engineering (BS)
- Architectural Engineering (BS)
- Chemical Engineering (BS)
- Civil Engineering (BS)
- Computer Engineering (BS)
- Control and Instrumentation Systems Engineering (BS)
- Electrical Engineering (BS)
- Industrial and Systems Engineering (BS)
- Mechanical Engineering (BS)
- Petroleum Engineering (BS)
- Software Engineering (BS)
- Construction Engineering and Management (MEng)
- Construction Engineering and Management (MSc)
Computer Accreditation Commission

- Computer Science (BS)

The programs of the College of Industrial Management (CIM) are accredited by the Association to Advance Collegiate Schools of Business (AACSB). Other programs are in the final stages of accreditation by the National Commission for Academic Accreditation & Assessment (NCAAA).

Our academic programs are designed and updated not only to respond to global changes and local needs, but also to be pro-active in preparing future generations of leaders. We ensure that students come out of their academic experience at KFUPM equipped with all the knowledge, skills, attitudes and values that will make them successful leaders and good global citizens.

KFUPM continues the support and engagement of faculty and students in research activities through the various units and grants available at KFUPM including Colleges, Centers of Excellence, and Research groups. The recent development of the University includes its newly forged links with industries through the growth of Dhahran Techno Valley (DTV). This link with industry will support Saudi Arabia’s ambition to improve technology transfer and establish a knowledge-based economy.

The University also continues its commitment to community service through various formal and informal activities, but with the new dimension of implanting the culture of community service in our students through various programs established for this purpose.

I take this opportunity to extend my thanks and appreciation to the efforts of all those involved in successfully launching this Bulletin. My special thanks are due to Dr. Rajai Alassar and Dr. Ahmed Shawky Ibrahim for carefully revising this version of the Undergraduate Bulletin. Also, thanks are due to H.E. the Rector for his leadership and continuous support to all academic activities, and to all University Deans, Department Chairmen, Faculty, Support Units, and individuals who contributed to the development of this Bulletin. I would like to dedicate this version of the Bulletin to them, as they laid the path to the success achieved by the University.

As changes are likely to occur after publication of the Bulletin, updates may be viewed through the online version at http://regweb.kfupm.edu.sa.

Dr. Mohammad Saad Al-Homoud
Vice Rector for Academic Affairs
1st September, 2015
GENERAL INFORMATION
HISTORY AND PHILOSOPHY OF THE UNIVERSITY

King Fahd University of Petroleum & Minerals (KFUPM) was officially established by a Royal Decree on 5 Jumada I, 1383 (23 September 1963). The first students were admitted a year later on 23 September 1964 when 67 young men enrolled in what was then named the College of Petroleum & Minerals (CPM). Since that time, the University’s enrollment has grown to about 9,340 students during the 2013-2014 academic years.

The University’s growth has been marked by two significant events. The first of these was when the University conferred its first engineering degrees in 1971/1972. In that year, four men received Baccalaureate Degrees. By the end of the academic year 2013/2014, 29,898 degrees have been awarded including 3,193 Master’s and 198 PhD degrees. The second milestone was the official change in both name and status from a College to a University, which occurred in 1975, leading to the name University of Petroleum & Minerals. Later on, in the year 1986, the name was changed to King Fahd University of Petroleum & Minerals (KFUPM).

The rapid growth of KFUPM is related to the rapid economic and technical development of Saudi Arabia. It also reflects the rising expectations of the people of Saudi Arabia, the expanding opportunities for the country’s young men, and the increasing importance of Saudi Arabia as a major source of the world’s energy.

The vast petroleum and mineral resources of Saudi Arabia pose a complex and exciting challenge for scientific, technical and management education. To meet this challenge, the University has as its goals the advanced training of students in the fields of science, engineering and management for service and leadership in the Kingdom’s petroleum and minerals industries, and the promotion of research resulting in contributions to knowledge in these fields. In addition, because it derives a distinctive character from its being a technological university in the land of Islam, the University is unreservedly committed to deepening and broadening the faith of its Muslim students and to instilling in them an appreciation of the major contributions of their people to the world of mathematics and science. All areas of KFUPM—facilities, faculty, students and programs—are directed to the attainment of these goals.

ORGANIZATION

KFUPM is one of the 24 universities operated in the Kingdom by the Ministry of Higher Education, and regulated by the Council of Higher Education. It is an institution operating under a University Board, headed by the Minister of Higher Education. The Board has the responsibility for policy and control. It assigns to the Chief Executive Officer - the Rector of the University - the principal responsibility for the implementation of policy and the administration of the University. The Rector is assisted by two Vice Rectors (for Academic Affairs, and for Applied Research). He is also assisted by a General Supervisor for Services and several advisory standing committees.

LOCATION

The University is located in Dhahran, near the headquarters of the Saudi Aramco Oil Company (SAUDI ARAMCO) in the Eastern Province of Saudi Arabia. The campus is situated near the Arabian Gulf at a distance of about 6 kilometers from the town of Khobar,
and 15 kilometers from the city of Dammam. The academic buildings are located on a hill (jebel) which is 35 meters above the surrounding desert. The University overlooks the Arabian Gulf, and is about 25 kilometers away from the island of Bahrain which can be seen from the roofs of the academic buildings in clear weather.

The University is easily accessible by road or airline from any point in the Kingdom, or by air, sea and road routes from Europe, Asia, Africa, or other Middle Eastern countries. The highway distance to Riyadh is about 400 kilometers and that to Jeddah is about 1,300 kilometers. A network of paved roads leads to various distant points, such as Najran, Abha, and Jaizan in the far south, to Burayadah and Hail northwest of Riyadh, to the lovely mountain resort of Taif near Makkah and Jeddah, and to Qaiysumah, Turaiif, and Tabuk along the northern frontier. King Fahd International Airport is about 40 kilometers from the University Campus, and a regular airline service exists to all domestic and many international terminals.

FACILITIES

The campus of the University features a physical plan of exceptional beauty and size. Constructed on Jebel Dhahran, the buildings are both architecturally imaginative and educationally sound and viable. Their exterior design combines the stark color and raggedness of the landscape with the graceful lines of the Islamic arch, dome, and minaret. Interiors feature laboratories, lecture halls, classrooms, seminar rooms, offices and a variety of special facilities including computer terminals, closed circuit television outlets, and other amenities. All buildings are centrally air-conditioned.

The academic complex consists of 37 major buildings. The facilities available include: faculty/staff offices; workshops and laboratory buildings, which include the heavy equipment laboratory building and the energy research laboratory building; the Information Technology Center; classrooms; the administration building; the Library; the faculty/student center, which includes the faculty dining hall, the post office, and the stationery shop; the auditorium which seats 850 people and is equipped for simultaneous translation in three languages; the gymnasium; a mosque; the Research Institute; the stadium, which seats 10,000 people; the Medical Center; the conference center; and multi-story parking garages. The facilities also include a natural exterior amphitheater, playing fields and indoor courts for intercollegiate and intramural sports, and the distinctive KFUPM water tower with circulatory water systems.

To the north of the Jebel there are: student housing including the student reception center, the student cafeteria, mosques, student clubs and services; a student commercial Center; the projects & maintenance complex; the University storehouse; the Security & Safety department; the transportation department; the garage for maintenance department vehicles; and the Preparatory Year campus, consisting of the Preparatory Year faculty office building, two classroom buildings, and various laboratories and service buildings. A new academic complex consists of two classroom buildings, a faculty office building, an auditorium for 700 persons and a mosque. The buildings are equipped with high-tech facilities.

To the south of the Jebel, there is the faculty & staff housing including the Community Center and the coop store. The telephone exchange, the University Press building, the Bookstore, the University nursery and kindergarten schools, and the sweet water tanks are located on the southeast of the University campus.
Conference Center

The Center is adjacent to the main University concourse and car park, and has extensive modern facilities for hosting international-level conferences. Its main oval-shaped auditorium can accommodate about 98 people while the other four independent briefing and committee rooms each have a 30-seat capacity. There is also an auditorium with 128 seats.

Conference meetings are supported by the latest audio-visual equipment, Community Antenna Television (CATV), connecting with all parts of the KFUPM campus, and its own typing facility.

Medical Center

The KFUPM Medical Center provides the community with the following services:

- Primary health care.
- Laboratory and X-ray facility in parallel to the available medical facilities.
- Referrals to the local governmental hospitals for further diagnosis, consultations, and hospitalization.
- Multi-specialty clinics in Internal Medicine, Pediatrics, Gynecology & Obstetrics, Ophthalmology, Psychiatry, Dermatology, and Dentistry.
- Vaccinations, which include primary (essential) vaccinations for children, as well as participation in the national preventive campaigns.
- 24-hour first-aid service for management of emergency cases.
- 24-hour ambulance service to attend emergency cases.
- 24-hour nursing service which includes giving injections, dressing and all possible nursing assistance such as checking blood pressure and vision tests, etc.
- Facility for observation inside the Medical Center, resulting in either discharging the patients or referring them to hospitals.
- Issuance of medical reports for residence permits (Iqama), sick leave, etc.
- Provision of medicines according to University policy.
- General dental clinics for dental care and oral hygiene.
- Check-up service for new employees, including staff & faculty, laborers of KFUPM food services on a regular, three-monthly basis, housemaids and drivers working for staff & faculty, and KFUPM school children before registration and before frequent short activities.

Student Housing

The University provides housing for the total student enrollment in keeping with its policy of being an entirely residential institution. The undergraduate student dormitories, which constitute the majority of student housing at this time, are in three-storey air-conditioned buildings, containing furnished rooms, with two beds per room, bathrooms zones (toilets, showers, and hygienic facilities), study rooms, and facilities for the handicapped. These units are located in the student compound (Al-Falah District), in the north sector of the campus and have been modernized. As part of the program to provide newer facilities of modern design, consistent with the
architecture of the University, most of the multi-story buildings are now completed and occupied.

Cafeteria

The student cafeteria—a large, spacious building— is situated adjacent to the student dormitories. It can accommodate more than 1500 students at a time. Students are provided with subsidized meals comprising breakfast, lunch and dinner.

The food preparation is handled by a well-qualified professional team in the central kitchen, fully furnished with modern equipment. The food services department makes sure that the food offered to students consists of a balanced diet conforming to the Saudi Standards (SASO).

Apart from the student cafeteria, there are a number of coffee shops located in different academic buildings and student dormitories.

Bookstore

The Bookstore is located near the KFUPM Press. Textbooks are issued to students and faculty free of charge. As a large number of specialized textbooks are needed for different University programs, a comprehensive textbook acquisition system is followed to ensure that the latest editions of books are used, as far as possible.

Sports and Recreation Facilities

The stadium, a major facility, is located near the main entrance to the University. It is designed to seat 10,000 spectators. The open stadium has flood lights, facilities for VIP seating, a press box, and TV booths. It is consistent with the construction style of all other permanent buildings within the academic complex.

Other available facilities are: swimming pools, changing rooms, soccer fields, tennis courts, athletics track, basketball and volleyball courts, handball courts, squash courts, athletic support facilities, and physiotherapy.

RESEARCH INSTITUTE

Research at the University can be classified into three categories: personal, sponsored, and client-funded. Historically, the first two categories involved faculty members in academic departments who followed their personal interests or participated in research sponsored by the University or other funding agencies. However, with the establishment of the Centers of Research Excellence by the Ministry of Higher Education and the receipt of funding for research from King Abdulaziz City for Science and Technology (KACST), King Abdullah University of Science and Technology (KAUST), and others, the Research Institute (RI) is now also heavily involved in conducting sponsored research. Both client-funded research and the sponsored research conducted in the RI are administered by the Vice Rector for Applied Research. The RI remains the focus of client-funded research at the University. However, full-time RI researchers together with faculty members with the appropriate expertise also form teams to undertake both types of research projects.
The mission of the RI is “to serve the nation by conducting applied research and development utilizing University resources.” Among its objectives are: to serve the nation as a professional problem solver; adapt imported technologies to the Saudi environment; serve the research and development needs of government organizations, local industry, and businesses; develop local expertise and be a part of the Kingdom’s quest to become a knowledge-based society; support graduate and undergraduate programs at KFUPM; and contribute to the high-quality education and training of students.

The first step in the process of client-funded research is often a technical memorandum submitted to the prospective client(s) describing the University’s applied research capabilities and a brief description of the proposed research. The client may follow-up by requesting a formal proposal. In other cases, an organization may directly approach the RI to seek help in dealing with a problem it is facing. Alternatively, the RI may receive a request for a proposal (RFP) to submit a proposal or to make a competitive bid and undertake applied research work. The response in all cases will be a proposal prepared by the relevant host unit describing the approach, scope, duration, and cost, with milestones and deliverables noted.

Clients normally award contracts for very specific studies. In all cases, a project team is formed consisting of full-time RI researchers and faculty members with the required expertise, appropriate background and experience. This arrangement ensures the optimum utilization of the manpower pool available for applied research.

The technical expertise for applied research available in the RI is concentrated in its six centers encompassing broad subject areas, the five Centers of Research Excellence, the KAUST Center in Development in Refining and Petrochemicals, and the Center for Strategic Studies & Planning, the expertise of which is focused in each specific area of research.

Applied research support for the whole University is provided by the RI’s Center for Research Support through its Contract Administration Unit and Finance & Personnel Unit.

Typically, 70 to 100 client-funded projects are active at any time, and over 100 project reports are produced annually. Several hundred laboratory services are completed each year, and the number of clients served in a year is about 150. In addition, RI researchers produce over 100 publications in the open literature annually. Several patents have been granted for the inventions of RI researchers and several are pending at any given time.

The manpower of the RI as of the end of 2010 included 244 full-time employees, of which 62 held PhD degrees, 71 held MS degrees, 45 held BS degrees, and 66 held other credentials. Project teams are typically comprise 35% full-time RI researchers, 25% faculty members, 10% students, and 30% support staff.

The research activities at the RI encompass the following:

- Studies in the areas of communication and signal processing, computer networking and information security, database and web applications, e-business and enterprise resource planning, computer applications and smart systems;
- Strategic planning, e-government implementation, e-business, and e-health, cost, economics, financial analysis and business modeling;
• Studies in the areas of mechanical, civil, and electrical engineering such as corrosion, traffic planning, pavement research, electric power, simulation of engineering systems, and materials characterization;
• Atmospheric pollution monitoring, landfill waste disposal and groundwater quality, marine water quality, water resources, and irrigation system analysis and modeling;
• Optimization of the production of oil and gas via appropriate drilling and extraction techniques, maximization of knowledge of oil- and gas-bearing formations, enhancement of oil exploration through remote sensing, and mineral resource studies;
• Development and improvement of catalysts, processes and products, improvement of polymer production processes, and enhancement of the use of polymers and plastics;
• Research and development in the utilization of solar energy and wind energy for power generation; and
• Nanoscience- and nanotechnology-based research in areas of strategic importance for the Kingdom.

The Research Institute is composed of the following centers:

• Center for Communications & Information Technology Research
• Center for Economics & Management
• Center for Engineering Research
• Center for Environment & Water
• Center for Petroleum & Minerals
• Center for Refining & Petrochemicals
• Center for Strategic Studies & Planning
• Center for Research Support

Within the last few years several Centers of Research Excellence (CoREs), which are housed in the RI, were established with funding of over SR100 million. While the funding for the Center of Research Excellence in Nanotechnology was received directly from the Custodian of the Two Holy Mosques, the other CoREs were established with funding from the Ministry of Higher Education. The CoREs are as follows:

• Center of Research Excellence in Corrosion
• Center of Research Excellence in Islamic Banking and Finance
• Center of Research Excellence in Nanotechnology
• Center of Research Excellence in Petroleum Refining and Petrochemicals
• Center of Research Excellence in Renewable Energy

One of the KAUST Centers-in-Development was awarded to KFUPM under the KAUST Global Research Partnership (GRP) program at the conclusion of a very competitive selection process. KFUPM is the recipient of one of only seven centers established worldwide under the GRP program, and the only one in the Middle East, chosen from proposals submitted by more than 60 prestigious institutions. The other recipients are Cornell University, the University of Oxford, Stanford University, Texas A&M University, National Taiwan University, and Utrecht University. The Center-in-Development on Transformative Research in Petrochemicals and Polymers was established at KFUPM in 2008 with funding of $4.5 million over three years.
DEANSHIP OF SCIENTIFIC RESEARCH

The Deanship of Scientific Research (DSR) at the University was originally established as part of the Deanship of Graduate Studies in the year 2000, and then became an independent deanship in September 2005. The DSR is responsible for the planning, management, promotion and support of research activities that are carried out by the academic departments through internal and external funding. The Deanship is managed by the Dean of Scientific Research. The functional responsibilities of the DSR include research activities such as funded projects, professional conference attendance, sabbatical leaves, release time, research scholarship programs and research awards. In addition, the Deanship manages a central workshop that serves the research needs of KFUPM faculty. The Deanship manages and plans research and other scholarly activities through the Scientific Research Council, which is a regulatory body chaired by the Dean of Scientific Research with its members selected from various academic departments. The research committee is an executive body composed of 11 members who represent the different University Colleges and the Research Institute. The Arabic research committee concentrates on the review and support of Arabic book authoring and translation in addition to Arabic research projects and studies. The conference committee is dedicated to the evaluation of applications submitted by faculty to attend regional and international scientific and professional conferences and meetings. All committees are chaired by the Dean of Scientific Research with members selected/elected from the different academic departments of the university.

Vision: To establish a conducive research environment and provide effective support to enable KFUPM to assume an international leadership role in innovative and quality research in cutting-edge knowledge and technologies found in key areas with a significant socio-economic impact.

Mission: To provide a stimulating environment and continuous support that empowers KFUPM faculty and researchers to enhance its national, regional and international leadership in quality research and scholarly activities in science, engineering, management and other related fields of significant importance to the Kingdom and worldwide.

Research Programs

- Research Groups Grants
- Internal Research Grants
- SABIC & Fast-Track Research Grants
- Book Writing/Translation Grants
- Junior Faculty Research Grant
- Societal Studies Grants
- Sabbatical/Release Time

Conference Attendance Support

Faculty members are eligible for a total of up to three conferences per year based on their activities on research.
DHAHRAN TECHNO-VALLEY

King Fahd University of Petroleum and Minerals, through the growth of Dhahran Techno-Valley (DTV), has accelerated its links with industry and with those who create, develop, and use new technology in Saudi Arabia. The mission of DTV is to support Saudi Arabia’s ambition to improve technology transfer and establish a knowledge-based economy in the Kingdom. DTV is envisioned to be the Middle East's most prestigious research and technology development nucleus with comprehensive business support. Interaction between world-class researchers from multinational companies and the university community (faculty, researchers and students) in an easily accessible facility is being strongly promoted to tackle the emerging challenges of presented by society and technology.

Mission: Providing total business environments that Inspire people to excel and make available a focal point for technical innovation to benefit business in the Kingdom and region.

Organization of DTV

DTV is more than a Research Park it consists of six entities under one umbrella:

2. Innovation Center
3. Business Incubator
4. Consultancy Services Center (CSC)
5. Liaison Office
6. Sultan Bin Abdulaziz Science and Technology Center (SciTech)

Its design is similar to the leading international facilities in Singapore, Hong Kong, Cambridge, Oxford, Aston, Warwick, Sheffield, Aberdeen, New York, North Carolina and Silicon Valley. Simply, it could be said that DTV has "a local mission with a global vision".

King Abdullah Bin Abdulaziz Science Park (KASP)

King Abdullah Bin Abdulaziz Science Park (KASP) was established in 2002, located on a 35-hectare site to the north of the main KFUPM campus. With its proximity to science and engineering colleges, this location provides for considerable interaction between tenant firms, their personnel, University scientists and student engineers. KASP houses a range of firms, mainly those involved in the regional petroleum and chemical industry, and the IT sector and is further targeting industries specialized in water technologies and renewable energy.

Services:

- Space (both land and offices) for companies to perform technology development, technology solutions and technology transfer.
- Conducive environment for research and technology development.
- Lateral interaction with other technology companies in the Science Park.
- Access to university resources such as laboratories, equipment, and man-power (faculty, students and researchers).
Innovation Center (IC)

The Dhahran Techno-Valley structure for innovation includes all the necessary entities that can deal with the different modes of innovation, accommodating a diverse range of ideas. Both the Innovation Center (IC) and the Business Incubator (BI) entities work harmoniously to manage a wide spectrum of technology exploitation. The KFUPM Roadmap for Innovation facilitates the flow of technology from University laboratories and research centers to the knowledge base and technology marketplace. The IC supports new concepts from the idea-generation stage, through the prototyping steps, and until they reach the proof of concept stage including intellectual property protection.

Mission: Inspiring and growing INNOVATIONS of the University community into highly financial superior quality technology products and business projects, in addition to promoting excellence in entrepreneurial performance, which will invigorate and impact the society of the Kingdom.

Services:
- Initial assessment of invention
- Confidentiality agreements
- Searches for prior art
- Managing patenting & protecting
- Training courses on IP issues
- Training on product development
- Project management & planning
- Proof-of-concept fund, Patent (IP) marketing

Business Incubator (BI)

The Business Incubator (BI) provides an ideal set of logistical, strategic, and operational support for start-up KSA technology companies and entrepreneurs to help increase the odds of success of their companies and consequently to grow and support the KSA technology industry. BI provides strategic support services in the form of business advice and mentoring, including strategic planning, financial planning, product and service development, partnership development, business contacts, and interim management resources. In addition to the strategic support services, BI also provides office support services.

Services:
- Business plan guiding
- Market research
- Financial guiding
- Logistics
- IP protection & legal advising
- World class office space & furniture
Consulting Services Center (CSC)

The Consulting Services Center (CSC) under Dhahran Techno-Valley aims to facilitate the consulting services of the university faculty to enable them to serve the industrial community in the Kingdom by resolving problems which require a strong intellect and a sound technological background. It is expected that such university-industry interaction will contribute to both the professional development of the faculty members and to the university thereby improving the quality of research and design projects, and providing more training and employment opportunities for students. Such activities result in the development of the local economy and the nationalization of expertise.

Objectives:

- Achieving KFUPM’s vision of serving as an education hub of the region, driving forward the economic and social development of Kingdom of Saudi Arabia
- Enriching Intellectual capability
- Consulting services could generate much needed revenue for the university and diversify the sources of income that could possibly be utilized for the funding of research projects involving students

Liaison Office (LO)

KFUPM Liaison Office under the umbrella of Dhahran Techno-Valley is the main link between industry and the research resources and technological opportunities of KFUPM. The interaction between the University and industry is very valuable for both sides. As part of DTV, the Liaison Office enables industry to draw upon KFUPM expertise to improve its own technology strategies, and at the same time helps faculty members stay abreast of the latest developments in industrial practices.

Mission: Facilitate and promote the University capabilities, expertise and services, and to be the focal point of contact with the industry/business community.

Objectives:

- Serve as central point of contact with industry thereby providing industry/business community an access to KFUPM faculty and researchers and vice versa
- Facilitate sponsored and collaborative research
- Market KFUPM research and expertise through web & social media, newsletters, brochures and special events
- Facilitate internships and students employment in industry
- Help university community gain access to industry facilities and personnel
Sultan Bin Abdulaziz Science and Technology Center (SCITECH)

The Center aims to cultivate members of Saudi society, especially teenagers, to inform them about the principles of science, their application, and explanation; it simplifies them by presenting them in an interactive and interesting way. The Center is located on the Corniche near Al-Khobar. It consists of seven main show halls showcasing different sciences and technologies. There are more than 350 scientific pieces on exhibition, and it houses the IMAX scientific dome (the only IMAX theater in Saudi Arabia), the Astronomic Observatory, Educational Unit, Conference Hall, Temporary Exhibitions Hall, and administrative and service Facilities.

Objectives:

- Simplifying the scientific ideas and making them interesting and enjoyable to the visitors of the center.
- Developing the curiosity to read and discover the scientific aspects in daily life.
- Development of awareness among visitors and their appreciation for the role of science and technology in their daily life.
- Organize exhibitions and seminars in the domains of science and technology to make the visitors aware of the activities within DTV and how they are important in today’s world.

INFORMATION TECHNOLOGY CENTER

The Information Technology Center (ITC) is the primary computing facility at King Fahd University of Petroleum & Minerals. It was established in 1964. It provides computing support for education, research, and the administration at the University. It also provides specialized IT services to government and industrial agencies in the Kingdom.

Mission: The ITC is committed to providing high-quality information services that foster a productive academic and research environment for students, faculty, staff, and management at KFUPM.

Services Provided by ITC:

ITC services are provided to all academic, research and administrative sectors. These services include, but are not limited to, the following:

- Student technical support, providing personal computing systems, anti-virus support, and services related to student examinations and teaching evaluations.

- Supporting and operating the computing resources with their various operating systems and databases.

- Supporting and operating networks that exceed 17,000 network points, while providing security to the information exchanged. Providing cable and network connectivity to support e-mail and the Internet, and administering the portal.
• Operating administrative and academic applications.

• Supporting and operating more than 50 computer laboratories.

• Services that are provided to outside customers (Government and public sectors), and various IT-related courses and tutorials.

Organization

The ITC consists of the following departments/units:

1. **Computing Services Department (CSS)**

 The CSS department serves the University faculty, students, staff and the Research Institute with extensive computing services in addition to comprehensive examination generation and grading services and the maintenance of hardware equipment.

2. **Academic Information System (ACIS)**

 The ACIS department maintains the University registration and learning systems and also has a section that provides technical support to the University libraries and their automation systems and services.

3. **Administrative Information Systems (ADIS)**

 The ADIS department maintains administrative applications such as payroll, personnel, financial accounting systems and material management.

4. **Network Services Department (NETS)**

 The NETS department provides the support for and operation of computer networks and the network infrastructure, network monitoring and network security.

5. **Systems Operations and Support (SOS)**

 The SOS department provides systems and operational support to different operating system platforms.

6. **IT Security**

 The ITC provides security to the various parts of the network and e-mail service, using high-end intrusion detection systems, firewalls, anti-virus applications, including a security layer against hackers.
7. **Project Management Office (PMO)**

The PMO supports information technology projects by monitoring and facilitating, across the ITC, the use of PM phases such as initiating, planning, executing, controlling and closing IT projects.

8. **Business Support Department (BSD)**

The BSD plays a strategic, support role by facilitating all business-related and administrative tasks of the ITC departments through the best practice models in IT.

The University Intranet

The KFUPM ITC envisions a world-class Information Technology Center that maintains the highest standards in delivering IT services to the KFUPM community and beyond. In effect, it envisages a “Campus of the Future” providing the foundation for a digital campus in terms of infrastructure, enterprise applications and portal. One of the main objectives of the ITC is to provide the KFUPM community with a centralized and personalized access to all campus information, services and communities. The KFUPM portal interface is a secure, single sign-on point of interaction offering access to diverse information, business policies and people, all personalized to a user’s needs and responsibilities. In addition, it creates a shared environment whereby students, faculty and staff can collaborate and communicate with each other.

The University networking facilities, maintained by the ITC, comprise a fiber optic Gigabit / Ethernet backbone, with some sites also connected with Copper cables, serving more than 17,000 fast-Ethernet wired network points across the campus that are controlled by more than 500 switches. A Wireless Network (Wi-Fi) is implemented in all academic buildings and connected with the University Enterprise Network.

Operating Systems and Storage

The ITC provides various operating systems that work with high-end file systems, especially with scientific applications. It provides e-mail services through the Web along with an anti-virus and vulnerability detection system. High Performance Computing (HPC) is provided to faculty, researchers and students.

Storage services are provided to staff, faculty and students in the form of the KFUPM-Filer, which can be accessed from anywhere in the Internet. The Filer is protected by anti-virus and backup facilities.

Computer Laboratories and Equipment

Computer Labs, installed for the benefit of staff, faculty and students, are well equipped with technology to enable classes and lectures to be held in them.

The Center has state-of-the-art printers together with various applications covering Programming Languages, Word Processors, Drawing applications, data base applications, and simulators for various academic needs, in addition to multiple applications that are used for academic purposes. The Center lately has received a developer license for computer
applications, such as the Microsoft license with which it will be possible to update and develop the applications of these companies and utilize them within the network.

Enterprise Systems at KFUPM

The University’s major IT requirements are served by the RAED systems supported by two major Enterprise Resource Planning (ERP) platforms. These include the Student Banner System for academic processes and the Oracle e-Business Systems for administrative/business processes. Other major enterprise systems include the University Learning System on the WebCT platform, the University Library Portal running on the Symphony platform, and a multi-tier Business Intelligence suite (using the Oracle warehousing tools, the Cognos suite for information analysis/reporting, dashboards, KPIs, etc., and SAS for advanced analytics). Several satellite systems, such as the in-house developed MedCare system, are also supported. All the software systems are connected through a KFUPM portal deployed on the Sungard Luminis platform.

The enterprise systems are operated and maintained by the ITC, thereby ensuring high-quality IT services to the University community. The ITC virtualization platform supports three critical goals: efficient server consolidation, robust disaster recovery implementation, and on-demand server provisioning. The University’s storage facilities are based on an intelligent setup of advanced replication technologies, which facilitate high availability and business continuity at KFUPM.

LIBRARY

The University Main Library is centrally located in Building 8 within walking distance from most classrooms and laboratories. The Library supports teaching and research in line with KFUPM’s mission by providing access to recorded knowledge through collections, services, cooperative programs, and connections to worldwide resources. It is an “open stack” library, allowing users free access to its resources. Reading areas are provided on the first, third, and fourth floors. There are many reading and study rooms on the third floor for serious reading, student-teacher meetings and discussions. To encourage and maximize utilization of its resources and services, the University Library operates with minimum regulations and restrictions.

The current collection of monographs and bound periodicals totals 381,775 volumes, of which 75% is in Science and Engineering, and the remaining 25% in Humanities and Social Sciences. In addition to the print collection, the Library provides access to more than 114,000 electronic books through various aggregating databases. There are 2,035 educational films and other media, subscriptions to about 226 periodicals (many titles are available in both print and e-journal formats), 37,530 reels of journal back issues on microfilm, and 73,737 items available in multimedia format.

The Library has a fine collection of electronic resources, including 41 online full-text databases providing article-level access to more than 17,000 journal titles and 16 bibliographic databases, and abstract-level access to more than 65,000 journal titles. The Library is also a member of the prestigious Saudi Digital Library Consortia, one of the pioneering projects of the National Center for E-Learning, Ministry of Higher Education. Most of the electronic resources including online databases can be accessed remotely both on- and off-campus through the Internet.
In addition to providing a complete range of library services to the KFUPM community, it also provides borrowing privileges and other select services to local government agencies and private institutions.

Some of the major library services offered are:

- Circulation of library materials
- Reference and Information Services
- Research assistance, including literature searches and on-line searching of bibliographic and full-text databases
- Interlibrary loan and photocopy services
- Audiovisual and multimedia services, and
- Library instruction (orientation of new faculty and preparatory year students for effective use of the Library)

There are two separate Internet search labs for faculty and students with over 45 high-end personal computers providing access to electronic resources through the Intranet and Internet.

Audiovisual materials and services are provided through a well-equipped AV department. The AV collection mainly consists of microforms, motion pictures, videotapes, and multimedia materials (CD, DVD). The Library Auditorium is used by faculty and students for the projection of AV materials, and also for seminars, lectures, short courses, thesis defenses, and other presentations.

The Library is currently using Symphony, an Integrated Library System, which has all the features of a modern system, including client/server architecture, GUI, and an Internet interface. With these features, users are able to perform multiple tasks from a single workstation, including access to the Internet, KFUPM Intranet, and e-library (OPAC), the web-catalogue.

For the convenience of Library patrons, a self-check-out station is also available for checking-out library materials without the mediation of the staff.

In addition to providing these services and resources, the Library also acts as a node for providing access to Turnitin, software for checking originality (plagiarism), and other user-centric services.

DEANSHIP OF ACADEMIC DEVELOPMENT

The faculty, curricula, and facilities are key components of the academic system of any University. The effectiveness of each of these components directly influences the effectiveness of student learning. King Fahd University of Petroleum and Minerals realized from the very beginning the vital importance of the continuous improvement and development of its faculty, academic programs and instructional technology, which forms the cornerstone in the quality of its graduates. Although the University has a rigorous academic system based on the regulations of the Ministry of Higher Education and on international standards, it has always been dynamic in exploring ways and means that lead to excellence in all academic activities. The Deanship of Academic Development (DAD) has therefore been
established to help the University community, particularly the faculty members, to increase their effectiveness in teaching and learning, to insure the highest quality in academic programs, and to utilize the latest technologies in teaching.

DAD was originally established as the Academic Development Center (ADC) in the year 2000, which was later promoted to a Deanship in the year 2003. The Deanship creates a focal point for the emphasis on academic matters such as teaching excellence, program development, quality assurance, and e-learning at KFUPM. It deals directly with issues related to the development of academic excellence for all faculty members through a variety of means such as training programs, consultations, the development and implementation of the instruments of quality assurance, and the promotion of the use of technology in instruction. Financial support through grants is provided to faculty members to carry out studies for the enhancement of the learning environment at the University.

Mission

The mission of DAD is to assist the University in continuously improving its academic system by enabling faculty and teaching assistants to reach their full potential in teaching and research and also by advising the University in the enhancement of its academic programs, facilities and processes to the best available quality standards.

Objectives

DAD’s mission will be accomplished by assisting the academic departments in their pursuit of the following objectives:

- Excellence in teaching: Enhance the teaching effectiveness of faculty and teaching assistants to provide instruction consistent with the best practices in teaching and learning
- Excellence in research: Continuous improvement of faculty development to enable faculty members to reach their highest potential in research and to progress in academic rank in a timely fashion
- Effective processes and methods: Enhance the effectiveness of processes and methods that are critical to teaching and research
- Quality assurance: Assist the departments toward the quality assurance of their academic programs and academic advising
- Instructional technologies: Utilize instructional technologies to improve the educational process at the University

Activities and Services

In order to achieve its objectives, DAD identified specific fields of interest, which are reviewed periodically according to the University’s evolving plans and polices. The main areas currently under DAD’s focus include:

- Faculty development to enhance teaching, learning and research productivity
- Quality assurance of academic programs
- Assessment of student learning
- Self-Assessment of academic programs
• Development of administrative skills
• Instructional technologies
• Development and delivery of quality online courses

DAD offers most of its services to the University community through its four Centers. It provides a range of academic development workshops, discussion forums and seminars in which international, national and local experts participate. The Deanship, through its Centers, sponsors activities related to teaching, research, faculty evaluation, student learning and curriculum, often with a specific audience in mind, such as new faculty, heads of departments, and college deans. The Deanship also conducts training programs on web-based education and develops its own expertise in this direction. In addition, personal consultation is available to any faculty member to enhance his teaching.

DAD also provides financial support/incentives through various grants to enable faculty to meet their objectives. The faculty members involved are expected to conduct studies in the various academic development areas such as faculty development; enhancement of the learning environment; technology-enhanced learning, etc. The Deanship is keen to collaborate with members of the University community on issues that lead to academic development at KFUPM. DAD also manages a resource center, offering a range of books, newsletters, journals and multimedia references such as videotapes, CD's, slides and other materials relating to its main areas of interest, especially teaching, learning and quality-assurance related issues. In addition, the Deanship publishes the proceedings of its workshops and discussion forums, as well as pamphlets on research and practices relating to teaching, learning, assessment and evaluation. These resources can be accessed by contacting the Deanship office.

Organization

DAD has four centers under its patronage, namely:

1. Teaching & Learning Center
2. Program Assessment Center
3. E-learning Center
4. Testing & Evaluation Center

Each center carries out various activities in its specific domain and is headed by a Director who reports to the Dean. The Dean reports to the Vice Rector for Academic Affairs of the University. A standing Committee on Academic Development comprising members from various academic departments of the University also supports the Deanship in carrying out its activities.

Teaching & Learning Center

King Fahd University of Petroleum & Minerals believes that every individual at KFUPM has a right to experience personal growth and development through enriched academic opportunities. The purpose of establishing the Teaching & Learning Centre (TLC) in 2003, as one of the centers of the Deanship of Academic Development, was to provide such experience by promoting excellence in teaching at all ranks and excellence in student learning inside and outside the classroom. The TLC activities include the provision of workshops, mini-courses, seminars, consulting services and resources to the faculty and
graduate teaching assistants to enhance teaching and learning. The TLC also administers several special programs including academic development grants.

Objectives

The primary objective is to provide KFUPM faculty members with a comprehensive range of activities and services to help offer quality education to the students. Specific objectives include:

- Fostering an environment of continuous academic development
- Assisting faculty members to attain their highest potential in teaching
- Providing instructional assistance to new faculty on campus
- Encouraging the use of new instructional technologies

Activities, Services and Grants

To achieve its objectives, the TLC provides a variety of activities, services and grants. These include training, support, and professional development programs for faculty, academic professionals, and academic departments.

Activities

The activities of the TLC include:

- Workshops, Discussion Forums and Seminars
- Microteaching: TLC organizes and facilitates microteaching workshops in which six to eight participants present brief lessons in their field, and then receive feedback from their peers
- Department-Based Workshops: TLC encourages and supports departmental-based workshops on topics related to teaching and learning

Services

The services offered by TLC include:

- Class Videotaping and Consulting consultant
- Peer Consultation in Teaching: The main objective of Peer Consultation in Teaching (PCT) is to provide faculty members with formative feedback on their teaching
- Teaching Consultation: Offers Discussions with Peer (senior) consultants who have been working with a number of faculty members and observed a good number of classes
- Resource Room: DAD administers a room, which has a collection of publications on the subject of faculty development and the enhancement of teaching and learning

Grants

TLC offers a number of academic development grants. Areas of the grants include:

- Enhancement of learning environment
- Technology enhanced learning
- Faculty development
Program Assessment Center

Continuous assessment is the key to quality assurance at the University. The aim of assessment is to understand how educational programs are working and to determine whether they are contributing to student growth and development. Program assessment focuses on programs rather than on individual students. It provides information on whether the curriculum as a whole provides students with the knowledge, skills and values that graduates should possess in accordance with its mission, set goals and learning objectives.

The new trends in accreditation criteria have focused on outcome assessment. Accrediting agencies such as the Accreditation Board for Engineering and Technology (ABET), the Association to Advance Collegiate Schools of Business (AACSB), the Computer Science Accreditation Board (CSAB), and the National Architectural Accrediting Board (NAAB) require programs or colleges seeking accreditation to undergo self-assessment. Pressure from industry and competitive job markets have also contributed to the need for continuous program quality improvement that focuses on student learning and preparation for professional practice after graduation.

The Program Assessment Center (PAC) at KFUPM strives to achieve its mission towards developing quality education that meets local industry needs following reputable international standards. It provides the necessary services and support for the various academic programs and research units at the University. It also facilitates and coordinates their efforts to meet their objectives and institutional goals.

Objectives

- Promote the culture of assessment university-wide
- Improve and maintain the highest academic standards at KFUPM
- Enhance students’ learning outcomes
- Provide support for academic programs and research units to meet their objectives and institutional goals
- Provide feedback for quality assurance of academic programs and research units
- Prepare the academic programs for national/international accreditation

The Program Assessment Center offers support, consultation and training for KFUPM faculty on assessment and accreditation issues. It keeps KFUPM faculty, academic and research departments updated on assessment and accreditation related issues through the invitation of reputable international speakers to conduct workshops and deliver seminars on the subject. The Center also keeps links with national and international assessment and accreditation organizations and invites international professionals to participate in the self-assessment teams of the various programs of the University.

e-Learning Center

The e-Learning Center strives to achieve excellence in teaching and to enhance the quality of teaching and learning through the effective use of web-based education, an education-enhancing development able to reach more students, and self-paced learning.

The e-Learning Center provides the following services to the university community:
Awareness Events

The Center regularly organizes public awareness events on new and diverse issues related to e-learning and to the role of e-Learning in enhancing teaching and learning. Such events include the benefits of e-learning, instructional design, online teaching, etc. Speakers of international repute in e-learning are invited to conduct these events.

Software and Resources

The e-Learning Center provides all necessary software and e-learning platforms, such as Learning Management Systems (LMS), Authoring tools, Assessment tools, etc., to ensure the successful delivery of e-learning activities. Currently, the e-Learning Center is providing LMS Blackboard and the synchronous teaching and video conferencing tool Centra, for the KFUPM community. Multimedia and graphic-designing software such as Rapid Learning, Articulate Flash, Author ware, Adobe Photoshop, Adobe Illustrator are also available. In addition, the Center provides a range of books, journals, videotapes and other materials related to e-learning available in the DAD Resource Center.

Training Workshops

Hands-on training programs are frequently conducted for KFUPM faculty to enable them to develop effective web-based instruction. These training programs cover a wide range of topics starting from the instructional design of online courses where participants are introduced to various concepts and tools that help in designing pedagogically sound online courses to the development of web-based content using various web-based content development tools. In addition, the Center provides training on Blackboard and its tools and on Centra. The Center also provides training on blended learning and tutoring on online courses. Frequent training sessions on different software are also conducted.

Grants

The e-Learning Center, through DAD, awards grants for the development of some KFUPM courses as comprehensive online courses, which could be delivered completely through the Web. In addition, DAD awards grants to encourage research and development in the area of technology-enhanced learning.

Online Instructional Material

The e-Learning Center provides support to develop online courses. Faculty members provide only the content of the online course and the support team in the e-Learning Center does the rest of the job. In addition, the e-Learning Center provides assistance to all KFUPM faculty members to develop quality online instructional material to enhance student learning.

e-Learning Quality Standards

To ensure quality in all e-learning activities at KFUPM, the Center has started the development of guidelines and quality standards for e-learning processes like copyrights, content development, course delivery, assessment and evaluation, online teaching, infrastructure, etc.
Testing & Evaluation Center

The Testing and Evaluation Center is concerned with the promotion and development of the best practices in academic testing and evaluation to enhance student learning, test equity and fairness. The Center provides support and training in test construction methods that would generate reliable and valid test scores. Also the Center conducts studies that support the development of standard exams and makes recommendations related to the process of student selection and overall assessment.

Mission

The Testing & Evaluation Center is dedicated to the advancement of testing and evaluation practices in teaching.

Objectives

- Make the Center available to all departments and faculty members for consultation on test construction techniques, and methodology for improving item writing, and improving test reliability and test content validity, without jeopardizing other equally significant features of good testing, such as construct validity
- Explore existing proficiency exams, with particular reference to admission and placement purposes
- Organize workshops and seminars on test construction techniques, for the benefit of KFUPM community, and other institutions in the region
- Follow modern trends in test adaptation and creation, and maintain ties with domestic and international organizations for a useful exchange of information on the quality and efficiency of assessment through joint research and experimental development
- Conduct research on issues relating to student pre-University performance, to specific University courses, and to students’ overall performance

Services and Activities

- Help academic departments with test construction and item analysis on various academic exams and standardized tests
- Prepare in collaboration with the Program Assessment Center, outcome (exit) exams to help academic departments assess their programs
- Train faculty in writing multiple-choice exams, based on international standards, and in cooperation with national and international centers for testing and evaluation
- Study the performance of students as related to KFUPM admissions criteria
- Study the effect of non-academic factors on student performance

DEANSHIP OF STUDENT AFFAIRS

The Deanship of Student Affairs deals with all issues concerning students and helps them from the joining date until graduation. According to its administrative structure, the Deanship consists of three main Assistant Deanships: Student Affairs, Employment & Training, and Counseling & Advising. The main units and departments of the Deanship include: the General Directorate of Student Affairs, Student Housing Department, Student Activities
Department, Student Fund, Counseling and Advising Center (CAAC), Training Department, Alumni Department, Career Guidance Department, Part-Time Unit, Scholarship Program Unit, Alumni Club, Religious Affairs Committee in Student Housing, and the Special Needs Office.

General Directorate of Student Affairs

The Deanship of Student Affairs is always concerned for the student and gives him full support and care since the day he joins the university until the day he graduates. The General Directorate of Student Affairs plays a vital and steady role in providing this care through the facilitation of the tasks of students in the University. The Directorate provides the following services for students: issuing identification certificates, clearance certificates, and low-price ticket certificates; issuing university ID's, contacting parents (when appropriate), issuing official medical excuses, and replying to all student inquires and directing the students to the appropriate parties.

The Student Records division plays a vital role in keeping the Deanship's documents and transactions in good order and in regularly updating the many regulations and instructions pertaining to the deanship. The work in this division is divided into two main areas:

1. Student records: to keep a student's original certificates when accepted into the University and any other formal papers during his stay at the University.
2. Various records: to keep all correspondences that

Student Housing Department

To support KFUPM students’ academic achievements, the University pays special attention to student accommodation. The Student Housing Department provides the requisite services and facilities for students on the university campus. The University aims to provide an accommodation environment that supports students in their studies and promotes their social communication. The student housing comprises modern buildings with about 4000 furnished rooms that can accommodate up to 8000 students. The students are received by the deanship or any other rules or regulations. Living on campus enjoy many services including internet and phone services in each room, transportation to and from academic buildings, maintenance, hygiene, recreation facilities, car parking, and general services such as food supplies, student services, restaurants, and cafes. Moreover, students can enjoy and participate in several cultural, social, and sports activities organized by the students' clubs.

The student housing department uses an effective electronic system to manage student accommodation whereby students can submit their applications and execute a number of housing services electronically. In addition, they are kept well-informed about available lists of housing, and they can register in the lists announced by the Housing Department.

Student Activities Department

The primary objective that lies behind the attention paid to student activities is to provide a healthy and active atmosphere that enables each student to practice his hobbies, activities and suitable recreational preferences after the daily efforts exerted in studying. Students play the main role in planning all extracurricular activities that are coordinated and executed through students' clubs, supervised by the Deanship of Student Affairs. The Department of Student
Activities aims to help students to form a well-balanced personality and to invest their time in meaningful and fruitful programs to enhance their talents and abilities. Students also receive training in leadership, loyalty and in how to bear responsibility; brotherly ties among students are strengthened, and a spirit of cooperation and harmony is fostered among students and between students and their instructors. The department also provides opportunities for students to get to know some of the administrative and social aspects.

There are 40 clubs supervised by the Student Activities Department, covering all scientific disciplines in the University, as well as sports, social, cultural and art activities. The University through the student fund provides full financial support for all approved programs and activities proposed by the student clubs. The activities of students' clubs focus on establishing training courses, scientific visits, scientific competitions, lectures, exhibitions, excursions, cultural competitions, art, literary programs, scouting, sports activities, receiving school delegations, and representing the University in many forums in the Kingdom and internationally. There are allocated offices and halls for club members.

Training Department

The task of the Training Department is to follow up on all programs of Cooperative Training and Summer Training for all university students. It approaches various companies to provide training opportunities, nominates students for training in these companies, each according to his field, and then monitors their training until the end of the training period. Forming a triangular link between students, training companies and academic departments is the prime aim of the department.

The Cooperative Program (Coop) is a structured educational strategy, integrating the theoretical knowledge learned in the classrooms and laboratories with real world experiences. The Coop was first introduced at KFUPM in 1970. It is one of the graduation requirements and is considered as a graded nine credit hours for students in some academic majors. The Coop program extends for a period of twenty-eight weeks. The objectives of the program are to enable the student to link theory and practice, to provide guidance for future career opportunities, familiarize the student with the work environment after graduation, develop the student's work ethic, communication, management, and teamwork skills, and to establish strong relationships between the University and industry. The Coop Department is responsible for coordinating with the employers to provide suitable training opportunities for the students.

The Summer Training Program is similar to the cooperative program in its objectives except that it lasts for eight weeks. It is one of the graduation requirements for some academic departments. The Summer Training Department is responsible for coordinating with the employers to provide suitable training opportunities for the students.

Career Guidance Department

It is a specialized department to help students choose the most suitable major based on accurate information about their inclinations, attitudes and abilities. The information is obtained through various activities and events, including the use of the career Oasis program, which helps to determine the academic preferences of students according to their understanding and career goals. The Department informs students about the requirements of the job market and prepares them to get the right job through recruitment events, such as
Open Day (during the first semester of the academic year), Career Day (during the second semester), and Specialty Day for Preparatory Year students. The Department provides short courses on decision-making and proper career planning, and arranges for personal pilot job interviews for students expected to graduate. Moreover, the department invites specialists from inside and outside the Kingdom to give lectures to help new students to choose the appropriate major. These lectures help students to clarify their perceptions in general, especially after hearing the outstanding experiences and stories of success from the guests.

Alumni Department

There are a number of tasks and services provided by this department. These include reviewing the graduation documents, having them signed by the relevant University officials, and then delivering them to graduates, issuing certificates of good behavior, ratifying the document copies, preparing the final graduation certificates to be signed by concerned officials and delivering them to graduates, participating in the annual graduation and honor awards ceremonies, providing employers with requested information regarding the alumni for the purpose of recruitment, and informing alumni about the employment opportunities available in organizations and companies in the private and public sectors.

Scholarship Program Unit

Major national and international companies and government agencies provide scholarship opportunities for high achievers among the University students. This unit coordinates with different divisions of the University to provide the necessary support to such companies and agencies to announce their scholarship opportunities to all students and also to help them in identifying eligible and qualified students. The Scholarship Program Unit honors the signed agreement between the sponsoring agency and the student, delivers official documents and graduation certificates, and provides the necessary information to the concerned officials of the sponsoring agencies which include the academic status and progress of the student and the delivery of official documents and graduation certificates.

Part Time Unit

This unit coordinates part-time work inside the University, nominating and assigning students to part-time jobs based on the actual needs of the academic and administrative departments in the University.

Counseling and Advising Center (CAAC)

The main objective of the CAAC is to help equip KFUPM graduates with the right technical information and the proper personal skills. It aims to provide all students with academic and social counseling and advising. The CAAC has many objectives, among which are the following:

1. Assisting the students to achieve psychological, social and academic adjustment.
2. Psychological prevention of emotional and psychological disorder through primary and secondary prevention.
3. Assisting to modify unwanted behavior.
4. Psychological support to face psychological social and academic stresses.
5. Holding lectures workshops and discussions for educational and preventive goals.
6. Provide psychological, social and academic help, guidance and advice to all students.
7. Prepare new students for university life.
8. Activate/improve academic advising.
9. Looking after students with poor academic performance and providing the necessary guidance and follow ups.
10. Studying the behavior and common practices of student and the expected effects.

The services provided by the CAAC include counseling in the following forms:

1. **Individual Counseling:** A student meets with a counselor on a one-to-one basis to work through personal concerns.
2. **Group Counseling:** Counseling in groups offers a broad range of insight and support from peers and professional counselors.
3. **Student/Guardian Counseling:** Couples counseling works toward alleviating the strains in close relationships. In such cases, one of the relatives, usually the father or a brother, are contacted and asked to visit the center.

Counseling is a collaborative process, which involves the development of a unique, confidential helping relationship. The CAAC treats all of its contacts with students in a highly confidential manner.

In addition, the CAAC arranges and conducts skill-building workshops and interactive seminars, which provide a structured presentation of information and skills practice appropriate to the students' personal development and career in the University. The CAAC participates in the issuance of bulletins and brochures on different topics that relate to student life and skill development. The Center also participates with relevant departments in supervising the social activities in the student dorms and it participates in planning and conducting the introductory (preparatory) program for new students. Furthermore, the Center studies student requests related to loans and financial aid, the part-time employment program, and housing, and makes the appropriate recommendation. It also interviews students who are planning to withdraw from the University and provides them with appropriate alternatives.

Faculty members are encouraged to utilize the services of the CAAC by referring the student to the Center or by seeking advice on what might be done for a particular student or group of students.

Student Fund

The Student Fund, established in 1406 H / 1986 by a decision of the the University Council, is considered to be one of the most important elements of the Deanship of Student Affairs as it is directly connected with the student and his financial needs.

The Student Fund performs various tasks including the financial assistance for students through subsidy and loans, as well as provides incentives for honor students. One of the vital tasks of the Student Fund is to support the students’ activities through Student Activities Clubs. The Student Fund also contributes to cooperative projects that would benefit the students.
The Student Fund council management includes the Dean of Student Affairs (President), the Assistant Dean for Student Affairs (Vice President), the Executive Manager for the Student Fund (member), the Financial Controller (member), three faculty members (members), and three distinguished students (members).

Alumni Club

The Club was established by the University Board in 1420 H /1999 and its headquarters are located at KFUPM in Dhahran. It aims to enhance the role of alumni in serving the Kingdom and society. The Club provides continuous communication with alumni, aiming to strengthen the relations between the University and the establishments where alumni are working and encouraging them to contribute financial and moral support to University programs and activities. The membership of the Club is divided into active, associate, and honorary membership. The Club has a council consisting of nine members who meet the selection requirements established by the University Council, and are chosen for three years (renewable) by the University Council as per the nomination of the Rector of the University. The head of the council is a member of the KFUPM Board of Executives.

Religious Affairs Committee in Student Housing

The Islamic religion and moral values form an important part of the student’s life in the University, so that the Deanship has focused on the allocation of a committee for Religious Affairs in Student Housing. This committee supervises a number of activities including:

1. Sport competitions and courses among groups.
2. Religious lectures during the week days.
3. Brief meetings after Isha prayer or Fajr prayer to discuss some religious issues.
4. Religious seminars, open discussion that would be held periodically.

GRADUATION

Upon satisfactory completion of all requirements for a degree from the University, students are invited to participate in the graduation ceremony. This colorful, time-honored university tradition, was instituted at KFUPM in 1972, and was the first such ceremony to be held at a university in Saudi Arabia.

A unique feature of the graduation ceremony is the dress worn by graduates. Designed especially for KFUPM, the gown is the Arabian meshlah, featuring the color of the specific college from which a particular student graduates. Instead of the usual "mortarboard" cap, the KFUPM graduate wears his traditional ghutra and egal.

The ceremony and the dresses are an impressive blending of academic and Arabian traditions.
ACADEMIC REGULATIONS
ACADEMIC REGULATIONS AND IMPLEMENTATIONS

The Undergraduate Study and Examinations Regulations and the KFUPM Rules for Their Implementation issued by the Deanship of Admissions and Registrations, Second Edition 2011/2012, is the basis of Articles (A1) to (A53) and their Implementations, provided herewith.

The Deanship of Admissions and Registrations will provide any further assistance in this matter.

DEFINITIONS

Article One

The Academic Year is: Two regular semesters and a summer semester, if any.

The Academic Semester is: A term of no less than (15) weeks of instruction not including the registration and final examination periods.

The Summer Semester is: A period of instruction not exceeding (8) weeks not including the registration and final examination periods. The weekly duration of each course in the summer semesters is twice its duration during a regular academic semester.

The Academic Level: Indicates the study level in accordance with the specifications of each approved degree plan.

The Degree Plan is: A combination of required, technical elective and free-elective courses that constitute the total number of credit hours required for graduation in a major. The student has to successfully pass the specified courses in order to earn the degree in that major.

A Course is: A subject of study within a certain academic level of the approved degree plan in each major. Each course has a number, code, title and a detailed description of its contents which distinguishes it from the other courses. A special file of each course is kept in the corresponding department for follow-up, evaluation and updating purposes. Some of the courses may have pre-requisite or co-requisite requirement(s).

The Credit Hour is: Each of the weekly lectures or clinical lessons with a duration not less than 50 minutes or a laboratory session or field study of not less than 100 minutes duration.

Academic Probation is: A notification given to a student with a cumulative GPA below the minimum acceptable limit as explained in these regulations.
<table>
<thead>
<tr>
<th>The Class Work Score is:</th>
<th>The score which reflects the student's standing during a semester according to his performance in the examinations, research and other activities related to a particular course.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Final Examination is:</td>
<td>An examination in the course, given once at the end of every semester.</td>
</tr>
<tr>
<td>The Final Examination Score is:</td>
<td>The score attained by the student in each course in the final examination.</td>
</tr>
<tr>
<td>The Final Score is:</td>
<td>The total of the class work score plus the final examination score calculated for each course out of a total grade of 100.</td>
</tr>
<tr>
<td>The Course Grade is:</td>
<td>A percentage, or alphabetical letter, assigned to a student, indicating the final grade he received in a course.</td>
</tr>
<tr>
<td>Incomplete Grade is:</td>
<td>A provisional grade assigned to each course in which a student fails to complete the requirements by the required date. This is indicated in the academic record by the letter grade "IC".</td>
</tr>
<tr>
<td>In Progress Grade is:</td>
<td>A provisional grade assigned to each course which requires more than one semester to complete. The letter grade "IP" is assigned in this case.</td>
</tr>
<tr>
<td>Semester GPA is:</td>
<td>The total quality points the student has achieved, divided by the credit-hours assigned for all the courses the student has taken in any semester. The quality points are calculated by multiplying the credit-hours by the grade earned in each course (see Appendix B).</td>
</tr>
<tr>
<td>Cumulative GPA is:</td>
<td>The total quality points the student has achieved in all courses he has taken since his enrollment at the University, divided by the total number of credit-hours assigned for these courses (see Appendix B).</td>
</tr>
<tr>
<td>Graduation Ranking is:</td>
<td>The assessment of the student's scholastic achievement during his study at the University.</td>
</tr>
<tr>
<td>Course Load is</td>
<td>The total number of credit hours a student is allowed to register in a semester. The upper and lower limits of the course load are fixed as per the implementation rules of the university.</td>
</tr>
</tbody>
</table>
DEFINITIONS OF TERMS USED IN THE IMPLEMENTATION RULES

The Grading System applicable at KFUPM

Appendix "C" shows the grading system applicable at the University including the points assigned to each grade. The maximum GPA a student may attain is 4.00.

Transcript

An official document that includes all the courses a student has taken at the University as of the date of its printing. It indicates course codes, numbers and credit hours, the grades earned by the student, semester GPA, and cumulative GPA. In addition, it includes the list of courses and credits transferred, if any.

Major GPA

The major GPA is calculated on the basis of all the letter grades assigned in the courses taken in the student's major, as specified in the degree plan. The major GPA is determined by the last grade assigned in each course.

The Credit-Hour for the Laboratory or Field Sessions

The duration of laboratory sessions or field study usually ranges from 150 to 200 minutes; a minimum of 100 minutes is assigned in some programs.

The Admission & Academic Standing Committee

This is a consultative committee set up by the Rector of the University to study applications for transfer, readmission petitions, suspensions, and dismissals, and to reach the appropriate recommendations in accordance with the regulations.

Promotion from Prep-Year Courses

This is based upon successfully passing all or some of the Prep-Year courses in accordance with the rules set by the University.

The Cooperative Program

A period not exceeding (28) weeks of on-the-job training spent by the student, as per the requirement of his major. The student must complete the cooperative program before his last semester at the University.

Summer Training

A period not exceeding (8) weeks of on-the-job training spent by the student, as per the requirement of his major. The student must complete the summer training before his last semester at the University.

ADMISSION OF NEW STUDENTS

Article Two

Based upon the recommendation of the college councils and the other concerned bodies of the University, the University Council determines the number of new students to be admitted in the following academic year.
Implementation Rules of Article Two

1. The Deanship of Admissions & Registration prepares a draft recommendation to the University Council in coordination with the concerned bodies of the University regarding the number of students to be admitted into the university during the following academic year.
2. The Deanship of Admissions & Registration and the colleges in the University coordinate with each other in the matter of determining the majors of the students who are expected to complete the Preparatory Year Program. The major of these students will be determined according to their own choice, based upon the conditions set by the University.

Article Three

An applicant for admission to the University must satisfy the following conditions.

a. He should have a secondary school certificate, or its equivalent from inside or outside the Kingdom of Saudi Arabia.
b. He should have obtained his secondary school certificate in a period of less than 5 years prior to the date of application. However, the University Council may waive this condition if the applicant has a satisfactory explanation.
c. He must have a record of good conduct.
d. He must successfully pass any examination or personal interviews as determined by the University Council.
e. He must be physically fit and healthy.
f. He must obtain the approval of his employer, if he is an employee of any government or private agency.
g. He must satisfy any other conditions the University Council may deem necessary at the time of application.

Implementation Rules of Article Three

Applicants having Saudi secondary school certificates must have majored in the natural sciences. If the applicant earned his secondary school certificate from outside the Kingdom, equivalent requirements apply.

ADMISSION OF NEW STUDENTS

Article Four

Admission is granted to applicants who satisfy all admission requirements, and is based on the applicant's grades in the secondary school examinations, the interviews and admission examinations, if any.

Implementation Rules of Article Four

1. After the completion of the admission examinations, the Deanship of Admissions & Registration makes a recommendation to admit the candidates who fulfilled the criteria based on the highest compound evaluation and the capacity designated by the University. After the Rector of the University approves the recommendation, candidates are informed accordingly.
2. Admission will be canceled for candidates who have been informed of their admission but fail to report on the designated time.

3. All newly admitted students are required to complete the Preparatory Year Program before starting their undergraduate study. Students may be exempted from part or the whole program according to the implementation rules of the promotion exams.

4. The Preparatory Year Program

4.1 The Preparatory Year Program aims at preparing the newly admitted students for undergraduate study and university life, and enhancing their opportunity for success and excellence through the following:

 a. Developing students' skills in English to enable them to study and communicate in English during their undergraduate study.
 b. Strengthening students' understanding and comprehension of basic mathematical concepts, and developing their analytical and critical thinking abilities through solution approaches to mathematical problems.
 c. Providing the students with the basic knowledge and skills to prepare them for academic endeavor, develop effective learning styles, adapt to University life, choose their field of study, and practice a healthy lifestyle.

4.2 The duration of the Preparatory Year Program is one academic year, (the summer semester, if necessary), during which English, Mathematics, or any other courses that the University deems necessary, are offered.

4.3 The grades earned by the student in the preparatory year courses are recorded in his transcript together with the semester GPA and his cumulative GPA. However, these grades are not counted in calculation of cumulative GPA for the undergraduate program. The effect of the academic status assigned to the student at the end of his last semester in the preparatory year continues through his subsequent University academic level (i.e., first semester of the freshman year).

4.4 If a student earns a grade of C or above in all the English and Mathematics courses, and a grade of D or above in the remaining preparatory year courses in the allowed period, then he will be promoted to the first academic level in the University, and has the right to select a major of his choice in accordance with the rules set by the University.

4.5 A student may be exempted from studying Preparatory Year English module(s), if he proves his proficiency in English before starting study in the Preparatory Year Program as per rules set by the University.

4.6 If a student successfully passes all the preparatory year English modules, and is left with the remaining preparatory year courses, he may be allowed to register for some University courses in accordance with the rules set by the University.

4.7 A student will be dismissed from the Preparatory Year Program if either:

 1. He earns the grade less than C three times or more in all English Modules or earns the grade F or DN or WF twice consecutively in the same Mathematics preparatory year course; or
2. He fails to complete all the preparatory year courses within the duration of the program in addition to a maximum of one half of that duration.

ACADEMIC REGULATIONS

Article Five

a. The student gradually progresses in his study in accordance with the implementation rules approved by the University Council.
b. Degree plans of undergraduate study are designed to comprise a minimum of eight (8) semesters.

Implementation Rules of Article Five

1. The University publishes for the students through available means all rules, regulations, and requirements related to study and graduation at the University, which students are responsible to know and follow. Academic advisors assist students in planning their academic programs, but their academic advising activities do not relieve students of this responsibility. Therefore every student should be thoroughly familiar with all the academic regulations and the degree conferral system and remain informed about them throughout his career at the University. A student may consult with his academic advisor or the department’s Chairman in this respect.

2. The University assigns an academic advisor to each student to assist him in matters relating to his academic progress such as:

 a. selecting a degree program consistent with the student's objectives and ability;
 b. interpreting and understanding the academic regulations;
 c. informing the student of the sequence of required and elective courses in his degree program and suggesting electives;
 d. monitoring the student's progress and performance;
 e. assisting in early registration and other registration activities; and
 f. assisting in course substitution, if necessary.

The academic advisor is a faculty member in the academic department or the college in which the student is enrolled. The advisor of the preparatory year students is the Assistant Dean for Preparatory Year Affairs in the College of Applied & Supporting Studies or anyone else assigned to act as an advisor amongst the faculty members.

3. Degree Plan

The courses of each degree are spread over academic levels. The required as well as elective courses and the number of credit hours that a student needs to successfully complete in order to receive a degree in his major field are clearly specified for each academic level. This distribution of courses and credit hours is called "the Degree Plan". All degree plans are approved by the University Council. The academic departments regularly review and update the degree plans in order to provide students with continuously updated programs. The following rules apply to the degree plans.
a. The academic departments select the acceptable elective courses and present them to the relevant College Council. The approved list is forwarded to the Deanship of Admissions & Registration for implementation.

b. In special circumstances, some students may change from one degree plan to another, provided this does not affect their graduation requirements.

c. In introducing any changes to a degree plan, it is anticipated that some courses may not be offered, or may be discontinued, or new courses may be included in the degree plan. Therefore, the concerned academic department should take into consideration the time needed for out-of-phase students by introducing an implementation plan that allows them to complete their graduation requirements in accordance with their original degree plan.

d. If the old degree plan requires studying a course that has been canceled, and consequently it becomes impossible to register for such a course, the course could be substituted by an alternative course, consistent in level, subject area, and credit hours, with the approval of the academic advisor, the department council, and the relevant Vice Rector of the University. The Deanship of Admissions & Registration should be informed about the approval of this substitution for implementation.

e. A readmitted student will be subject to the degree plan assigned to him during his last semester at the University before receiving discontinued status. However, if this plan has been canceled, he will be placed in the most recent plan in his major based on a recommendation from the academic department concerned.

f. Students are required to study within the framework of their approved degree plan and once they fulfill all the requirements they are nominated for graduation.

4. Assignment of Academic Status

A student's academic status will be determined at the end of each semester and will appear on the transcript that shows his achievements throughout his undergraduate study. However, the summer semester does not change the academic status. A student's academic status may be one of the following:

Good Standing

Good Standing status is maintained when the student's cumulative GPA and semester GPA are at least 2.00. Students are expected to maintain this standing till their graduation.

Academic Warning

A student will be placed under Academic Warning status after the final grades have been processed at the end of each semester (except summer semester) if any of the following cases occurs:

a. his cumulative GPA is less than 2.00 but more than 1.00;

b. his semester GPA is less than 2.00.
Academic Probation

A student is placed under Academic Probation status after the final grades have been processed at the end of each semester (except summer semester), if his cumulative GPA is less than 1.00.

5. Discontinuation from Study

Carrying forward the academic status that was assigned to a student at the end of his last semester in the Preparatory Year program, he shall be discontinued for at least one semester if any of the following cases occurs:

a. his semester GPA is less than 1.00;
b. he was previously on academic warning or probation in a regular semester and in the next term achieved a semester GPA of less than 1.75;
c. the student receives three consecutive academic warnings.

The Rector of the University may however give the student an opportunity to continue his studies following the recommendation of the Admission & Academic Standing Committee.

6. Ending of Academic Warning or Discontinuation Status

a. After the lapse of one regular semester from issuing the warning or probation, the academic status can be revoked if the student achieves a semester and cumulative GPA of 2.00 or above at the end of that semester.
b. A student who has been discontinued may apply for readmission within the period specified by the Deanship of Admissions & Registration. The Admission and Academic Standing Committee, in coordination with the concerned college, if needed, considers applications for readmission of the student. The discontinuation period is not counted in the period required to finish the degree.

7. Conferral of Two Undergraduate Degrees

After obtaining the approval of the two department councils and the two college councils concerned, a student may apply for two undergraduate degrees provided he has completed at least 32 credit hours and his cumulative GPA is not less than 3.00. The two degrees are granted when the following requirements are fulfilled:

a. The course and cumulative GPA requirements for each degree must be individually satisfied.
b. The total credit-hours completed should be at least 28 in excess of that which is required by whichever of the two degree programs carries the higher credit-hour requirement.
c. If both programs have cooperative assignments, the student may take one assignment and substitute the other by taking courses as determined by the councils of the two colleges concerned, in accordance with the study plan of the two degrees.
d. If both programs require summer training, the student may undertake one program as per the recommendation of the councils of the two colleges concerned.

8. KFUPM employees may be admitted and registered for an undergraduate program on a part-time basis in accordance with the procedures approved by the Rector of the University.
THE ACADEMIC LEVELS SYSTEM

Article Six

According to the rules and regulations established by the University Council, some colleges may formulate their programs on the basis of a full academic year. In this case the academic year is equivalent to two academic levels.

Article Seven

The academic levels system divides the academic year into two regular semesters. There may be a summer semester, the duration of which is considered as half a regular semester. The degree requirements are divided into various levels in accordance with the degree plan approved by the University Council.

Implementation Rules of Article Seven

For some of the University programs, a semester may be divided into two parts. The governing regulations shall be approved by the University Council.

Article Eight

The University Council sets up the detailed regulations which govern registration, dropping, and adding of courses within the levels of the approved degree plan while ensuring the specified minimum course load for the students.

Implementation Rules of Article Eight

1. Registration Procedures

1.1 The approval of the academic advisor is required for completing the registration process in accordance with the rules set by the University.

1.2 Early Registration

At approximately the middle of the first (fall) semester, early registration is held for the courses to be taken by students during the second (spring) semester; and in the middle of the second semester, early registration is held for both the coming summer semester and the first semester of the following academic year. Early registration is required of all enrolled students during the semester. Students who early registered for a particular semester are also required to do registration confirmation on the scheduled registration day for that semester.

1.3 Formal Registration Confirmation

Formal registration confirmation is held at the beginning of each semester or summer semester. Students are required to complete registration confirmation as specified in the academic calendar. Each student must do registration confirmation himself. Registration by proxy or any other way is not permitted at all.
1.4 **Late Registration:**

If necessary, a student may be allowed to register late during the period specified in the academic calendar, in accordance with the rules set by the University. The student is responsible for all the consequences of his late registration.

1.5 **Adding and Dropping Courses**

A student may change his registration by adding some courses during the period specified in the academic calendar. Also, courses will not appear in the student’s transcript if dropped during the first two weeks of classes in a regular semester (the first week in a summer semester). The following conditions apply:

First: Dropping Courses

a. The course load must remain at or above the minimum allowable limit. See Implementation Rules of this Article.
b. If the course being dropped is a co-requisite for another registered course, the two courses should be dropped simultaneously, or continued to be studied together. (See Implementation Rules of Article 13.)

Second: Adding Courses

a. The course load should not exceed the maximum allowable limit (See Implementation Rules of this Article).
b. The courses added should not result in a conflict in the student's schedule or final examinations.
c. If a student desires to add a course section that is closed, and taking into consideration the evenness of distribution of students among sections of that course, then he must get the approval of the Chairman of department offering the course, and submit it to the Deanship of Admissions & Registration within the specified time.

2. **Auditing a Course**

A student can change the status of a course for which he has already registered, from regular to audit, with the concurrence of the course instructor and subsequent approval of the Chairman of the department offering the course, and the Chairman of the student's major department. However, while making a request to audit a course, the student must bear in mind that:

a. he can audit a course only if he is expected to graduate in the current semester;
b. he cannot audit a course that he needs in order to graduate;
c. the "audit" status for a course cannot be changed to "credit" status after the “adding” period;
d. once a course has been audited, it cannot be repeated for credit in subsequent semester(s) except if it is a required course in a new major. This exception will require approval of the advisor, the Chairman of the (major) department, the Dean of the college and the Vice Rector for Academic Affairs;
e. the deadline for receiving audit requests by the Deanship of Admissions & Registration is the last day for dropping course(s) with the grade of W in the respective term as indicated in the academic calendar. (See Implementation Rules for Article 28.)
3. **Course Substitution in the Degree Plan**

 Some courses can be exchanged or substituted by other courses with the approval of the relevant Vice Rector of the University, then informing the Deanship of Admissions & Registration for implementation. This is only possible in cases such as: if certain courses in the student’s degree plan are discontinued, or changes are made in the contents of a course, or a new curriculum is adopted that does not include certain courses required by the student.

4. **Repeating a Course**

 A student who obtains a failing grade in a required course must repeat this course. Additionally, a student can repeat a course for which he previously obtained a D or D+ grade. The last grade will reflect the student's performance in such a course. Should a student repeat a required course in which he had earned a D or D+ grade, and fail, he must repeat the course and get a passing grade. All the grades are included in the GPA calculation in the student’s transcript.

5. **Enrollment in the Cooperative Program**

 Some students, according to the requirements of their majors and degree plans, should spend a period (not exceeding 28 weeks) of practical training in their major field. The student must remain in continuous contact with his academic department during the training period. In order to qualify for enrollment in this program the student should:

 a. have completed more than 85 credit hours of his degree plan and should complete the cooperative assignment before his last semester at the University;
 b. have completed all the required courses as identified by his major department;
 c. have a cumulative GPA and major GPA of 2.00 or above;
 d. not be discontinued from study.
 e. not be allowed to take any other courses along with the Cooperative Program.

6. **Enrollment in Summer Training**

 Some students, according to the requirements of their majors and degree plans, should spend a summer training period of eight (8) weeks in their major field. The student should complete the summer training period before his last semester at the University. In order to qualify for enrollment in this program the student should:

 a. have completed more than 65 credit hours of his degree plan;
 b. have completed all the required courses as identified by his major department;
 c. have a cumulative GPA and major GPA of 2.00 or above;
 d. not be discontinued from study;
 e. not be allowed to take any other courses along with the Summer Training.

7. **Course Load**

 A course load is defined as the number of credit-hours for which a student is registered in a regular semester or a summer semester. The course load varies from one major to another and is determined as follows:
(a) The Minimum and Maximum Course Load Limit in a Regular Semester for a Student with Good Standing:

- The minimum course load limit is 12 credit hours during a regular semester. This condition is waived in the last semester before graduation.
- The maximum course load is 19 credit hours.
- A student is permitted to register for 21 credit hours with the approval of his department Chairman, if the student has maintained a minimum cumulative GPA of 3.00 in the preceding semesters that include the last 28 credit hours taken by the student.
- The maximum course load in a summer semester is 8 credit hours.

(b) Minimum and Maximum Course Load for a Student on Academic Warning or Probation:

- The minimum course load is 12 credit hours in a regular semester.
- The maximum course load is 15 credit hours in a regular semester.
- The maximum course load is 7 credit hours in a summer semester.

(c) Maximum Course Load for a Student in his Last Term Before Graduation

- The maximum course load is 20 credit hours in a regular semester.
- The maximum course load is 9 credit hours in a summer semester.
- The student should have maintained a minimum cumulative GPA of 2.00 in the preceding semesters that include the last 28 credit hours taken by the student.

8. **Student Transcript of Academic Record**

8.1 At the end of each academic term, a copy of the student’s academic record (the Transcript) is made available for him. No copy of the transcript is issued, given or sent to any outside agency or any other person without a written authorization by the student. No partial records are issued. The transcript must comprise the complete academic record of the student from the date of admission to the issue date.

8.2 The accuracy of a student record is of the utmost importance and errors should be brought to the immediate attention of the Deanship of Admissions & Registration.

ATTENDANCE AND WITHDRAWAL

Article Nine

A regular student should attend all classes and laboratory sessions. A student may be discontinued from a course and denied entrance to the final examination if his attendance is less than the limit determined by the University Council. This limit cannot be less than 75% of classes and lab sessions assigned to each course during the semester. A student who is denied entrance to the examination due to excessive absences will be considered as having failed that course with a DN grade.
Implementation Rules of Article Nine

If the number of unexcused absences for a student exceeds 20% of the lecture and laboratory sessions scheduled for a course, then he is not allowed to continue in the course or take the final examination and shall be given a DN grade by the course instructor with the department Chairman’s approval.

Article Ten

The college council - or whatever body it delegates its authority to - may exempt a student from the provisions of Article Nine and allow him to attend the final examination if he provides an excuse acceptable to the council. For such an exemption provided by the University Council, the minimum attendance requirement is not less than 50% of the lecture and laboratory sessions scheduled for the course.

Implementation Rules of Article Ten

1. If the attendance of a student is less than two thirds (2/3) of the lecture and laboratory sessions scheduled for a course, then he is not allowed to continue in the course or take the final examination and shall be given a DN grade by the course instructor with the approval of the department’s Chairman.

2. The college council - or whatever body it delegates its authority to - may revoke the DN grade assigned to the student in a course, and allow him to continue in that course and take the final examination if he furnishes an excuse acceptable to the council, provided that his total attendance in the lecture and laboratory sessions is not less than two thirds (2/3), and his unexcused absences do not exceed 20%, as the Implementation Rule for Article Nine applies for his case.

Article Eleven

A student who fails to attend the final examination will be given zero in that examination. In this case, his course grade will be calculated on the basis of the class work score he earned in the course.

Article Twelve

If a student fails to attend the final examination of any of his scheduled courses due to circumstances beyond his control, the college council, in exceptional cases, may accept the excuse and arrange a make-up examination for the student within a period not exceeding the end of the next semester. In such cases the course grade will be given to the student after the make-up examination.

Implementation Rules of Article Twelve

1. The student must furnish the excuse to his instructor and request a make-up examination before the end of the next regular semester.

2. The course instructor shall submit his report to the department Chairman for presentation to the departmental council and then the college council.
3. Under exceptionally pressing circumstances, the college council may accept the student's excuse and give him a make-up examination before the end of the following semester. The final grade will be given to the student after that make-up examination.

Article Thirteen

(a) A student may be allowed to withdraw for a semester and not be considered as having failed the courses if he furnishes an acceptable excuse to the authorized body as determined by the University Council, during the time period specified in the implementation rules approved by the University Council. The student is given a “W” grade for the courses, and the semester is counted towards the period required to complete graduation requirements.

(b) A student may withdraw from a course or a number of courses in accordance with the implementation rules approved by the University Council.

Implementation Rules of Article Thirteen

1. The Deanship of Student Affairs shall study all applications for withdrawal for the semester. If the request is approved, withdrawal procedures are completed at the Deanship of Admissions & Registration, and the student’s enrollment is suspended.

2. If a student has received any course grades before submitting an application to withdraw for a semester, all such grades are retained in his academic record.

3. A student is not allowed to withdraw for more than two consecutive and three non-consecutive semesters during his entire course of study at the university. The Rector of the University, or whomever he delegates his authority, may exempt a student from this provision. The period of interruption of study is counted towards the period required to complete graduation requirements.

4. A student may withdraw from a course or a number of courses during the periods specified in the academic calendar that is approved by the University Council as follows:
 - withdraw from a course or a number of courses without permanent record during the first two weeks of a regular semester.
 - withdraw from a course or a number of courses with “W” grade during the next four weeks.
 - withdraw from all courses with “W” grade during the four weeks that follow.
 - withdraw from all courses during the very next four weeks and his grade in each course is determined as "Withdrawn with Pass (WP)" or "Withdrawn with Fail (WF)". The grade will be assigned by the instructor, with the approval of the department Chairman, in the light of the student's performance before his application to withdraw.

5. If a student withdraws during the 15th week, Article Eleven applies.

6. A Preparatory Year student is not allowed to withdraw from any course or a number of courses included in the Preparatory Year Program. However, if he wants to withdraw from all courses, the withdrawal system/schedule indicated in the Preparatory Year academic calendar approved by the University Council shall apply.
INTERRUPTION AND SUSPENSION OF ENROLLMENT

Article Fourteen

A student may submit an application for suspension of enrollment, for reasons acceptable to the college council, provided the suspension period does not exceed two consecutive semesters, or a maximum of three non-consecutive semesters, during his entire course of study at the University. Otherwise, his enrollment status will be canceled. However, the University Council may, at its discretion, make exceptions to this rule, and the suspension period will not be counted towards the period required to complete graduation requirements.

Implementation Rules of Article Fourteen

1. The Deanship of Admissions & Registration studies and makes a decision on all applications for suspension of enrollment for the semester. Then the student’s enrollment is suspended.

Article Fifteen

If a student interrupts his studies for one semester without submitting an application for suspension of enrollment, his enrollment status at the University will be canceled. The University Council however, may at its discretion, cancel a student's enrollment status if he discontinues his studies for a period of less than one semester. As for student studying by association, his enrollment is canceled if he becomes absent from all final examinations for the semester without presenting an acceptable excuse.

Article Sixteen

A student is not considered to have interrupted his studies during the terms he spends as a visiting student in other universities.

RE-ENROLLMENT

Article Seventeen

A student, whose enrollment status has been canceled, may apply for re-enrollment with the same University ID number and academic record he had before his suspension, provided:

a. that he applies for re-enrollment within four regular semesters from the date of cancellation of his enrollment status;
b. that four or more semesters have lapsed since cancellation of his enrollment, in which case the University Council may exempt a student from this provision in accordance with the regulations issued by the Council;
c. that he fulfills all the admission requirements for new students. The University Council may exempt a student from this condition; and
e. that he was not dismissed for academic reasons.
Implementation Rules of Article Seventeen

1. A suspended student should submit his re-enrollment application to the Deanship of Admissions & Registration, during the period specified by the Deanship, before the beginning of the semester in which he intends to resume study.
2. The Deanship of Admissions & Registration coordinates with the relevant college council in order to arrive at a decision regarding the application.
3. A student who interrupts his studies for more than four semesters may apply for admission as a new student if he fulfills all admission requirements for new students. No credits will be transferred from his previous record, though such credits will appear in his new academic record.
4. This article does not apply to students who are dismissed.

Article Eighteen

A student who has been dismissed from the University for academic or disciplinary reasons - or from other universities for disciplinary reasons - will not be re-enrolled at the University. If it becomes known later that a student has been dismissed for such reasons, his enrollment will automatically be considered null and void as of the re-enrollment date.

GRADUATION

Article Nineteen

1. A student graduates after successfully completing the graduation requirements according to the degree plan, provided his cumulative GPA is not less than what is specified by the University Council for each major, and in any case is not less than "Pass".
2. Following the recommendation of the department council, the college council may determine certain additional courses the student should take to improve his cumulative GPA if he has passed the required courses, but his graduation GPA is not satisfied.

Implementation Rules of Article Nineteen

1. A student should successfully complete all graduation requirements according to the degree plan of his major.
2. A student must attain a cumulative GPA and major GPA of 2.00 or above to graduate.
3. To obtain any degree from KFUPM, the student must have studied at KFUPM a minimum of 65 credit-hours, including at least 25 credit hours in his major field.
4. The Deanship of Admissions & Registration will prepare a list of students expected to graduate at the end of each semester, and present it to the University Council.
5. The Deanship of Admissions & Registration notifies the relevant departments to review the academic records and degree plans of all candidates for graduation to ensure that they have satisfied all graduation requirements. Then, the departments provide the Deanship of Admissions & Registration with a list of the students who qualify for graduation.
6. The Deanship of Admissions & Registration minutely reviews and checks all student records to ensure that all the graduation requirements have been completed.
7. The Deanship of Admissions & Registration shall prepare a list of students who have actually graduated at the end of each semester, and present it to the University Council.
8. A graduating student is obliged to obtain a clearance form from the Deanship of Student Affairs and have it signed by the following departments:
The Central Library, Bookstore, Security, Medical Center, Student Housing, Academic Major Department, Student Fund, Deanship of Admissions & Registration, Accounting, and any other departments as determined by the Deanship of Student Affairs.

9. The Deanship of Admissions & Registration prepares and issues the official graduation certificates and degrees and maintains copies of these documents.

10. No change is to be introduced to the academic record in any case after the graduation document is issued.

DISMISSAL

Article Twenty

Dismissal from the University will occur in the following circumstances:

a. A student will be dismissed if he obtains a maximum of three consecutive academic probations as the result of his cumulative GPA being less than the GPA needed for graduation as per Article 19 of these regulations. Following the recommendation of the college council, the University Council may allow the student a fourth opportunity to improve his cumulative GPA by taking additional courses.

b. A student will be dismissed if he fails to complete the graduation requirements within a maximum additional period equal to one half of the period determined for his graduation in the original program period. The University Council, however, may exempt the student from this restriction and give him the opportunity to complete the graduation requirements within an additional period of maximum duration equal to that of the original program.

c. The University Council, in exceptional cases, may address status of the students on whom the provisions of (a) and (b) above apply, and give them an additional opportunity not exceeding two semesters to complete the graduation requirements.

Implementation Rules of Article Twenty

1. A student is dismissed if he receives three consecutive academic probations.

2. Following the recommendation of the Deanship of Admissions & Registration in coordination with the college council, the University Council may allow the student a fourth opportunity to improve his cumulative GPA.

3. A student is dismissed if he fails to complete the graduation requirements within an additional period equal to one half of the original program's duration. The University Council, based upon the recommendation of the Deanship of Admissions & Registration in coordination with the college council, may exempt the student from this restriction and give him the opportunity to complete the graduation requirements within an additional period of maximum duration equal to that of the original program.

4. A student is dismissed if he fails to complete the graduation requirements within an additional period equal to that of the original program's duration. Following the recommendation of the Deanship of Admissions & Registration in coordination with the college council, the University Council may grant the student an additional opportunity not exceeding two regular semesters to complete the graduation requirements.

5. The Deanship of Admissions & Registration informs the student of his dismissal and cancels his enrollment.

6. A dismissed student is obliged to obtain a clearance form from the Deanship of Student Affairs and have it signed by all the relevant departments as mentioned in Article Nineteen.
STUDY BY AFFILIATION

Article Twenty-One

Based upon the recommendation of the colleges, the University Council may adopt the principle of admission by affiliation in some colleges and majors which allow this option. The University Council sets the rules and regulations for affiliation according to the following parameters:

(a) The credit-hours required for the graduation of an associate student should not be less than the credit-hours required of a regular student.

(b) The associate student will be treated, with regard to admission, grading, transfer, dismissal and re-enrollment, in exactly the same manner as a regular student except the requirement regarding class attendance.

(c) On the basis of the college council's recommendation, the University Council determines the rules required to evaluate the performance of associate students.

(d) The student transcript, graduation certificate, and degree, must indicate that the student has studied "by affiliation".
EXAMINATIONS AND GRADES

Article Twenty-Two

The class work score shall comprise not less than 30% of the course total score, as found by the college council on the basis of the recommendation of the department council offering the course.

Article Twenty-Three

The class work score is evaluated either by:

(a) oral and practical examinations, research, other class activities or some or part of all these and at least one written examination; or,
(b) at least two written examinations.

Article Twenty-Four

Based upon the recommendation of the department council offering the course, the college council may include practical or oral tests in the final examination of any course, and allocate a percentage to these tests as part of the final examination score.

Article Twenty-Five

Upon the instructor's recommendation, the council of the department which teaches the course may allow the student to complete the requirements of any course during the next term. In such an event, the grade IC will be recorded for the student in his academic record. IC grades are not included in the calculation of the semester and cumulative GPA until the student obtains his final grade in the course by completing all the requirements. If no change has been made in the IC grade after the lapse of one semester, the IC status will be changed to an F grade which will be included in the calculation of semester and cumulative GPA.

Implementation Rules of Article Twenty-Five

1. The course instructor may allow the student to complete the course requirements during the following term if there are exceptional circumstances which are beyond the student's control.
2. The course instructor assigns an IC grade for the student and submits a report to the department Chairman indicating the reasons and justifications for assigning the IC grade, and identifies the work and the time required to complete the course requirements.
3. The student must complete the course requirements by the end of the next regular semester. However, exceptions may be made in the following cases:
 (a) A student who attained an IC grade in the co-op program may, with the approval of the department Chairman, extend completion of the course requirements for one additional regular semester.
 (b) A student who attained an IC grade in a course in the semester preceding his co-op program may, with the approval of the department Chairman, extend completion of that course’s requirements within a maximum period of one regular semester after returning from the co-op program.
4. When the student completes the course requirements within the specified period, the course
instructor changes the student grade from IC to the new earned grade. The instructor also informs the Deanship of Admissions & Registration of the grade change within this period through the department Chairman concerned.

5. The Deanship of Admissions & Registration changes the grade to F and informs the student, course instructor and department Chairman accordingly if the grade has not been changed by the instructor within the specified period.

6. A student cannot repeat a course in which he previously earned an IC grade and the said grade has not been changed.

7. If a student has an IC grade, this results in the suspension of the student's academic standing during that semester. This also includes the suspension of distinction status.

8. A student is not allowed to register for a course wherein he earned an IC grade in the prerequisite(s) of that course.

Article Twenty-Six

Courses involving symposia, research, field work, or of a practical nature, may be excluded from some or all the rules of Articles 22, 23 & 25 following a decision by the college council and the recommendation of the department council teaching the course. The college council identifies alternate ways to evaluate the student's achievement in such courses.

Article Twenty-Seven

If any course of a research nature requires more than one semester for its completion, the student will be assigned an IP grade, and after the completion of the course, the student will be given the grade he has earned. However, if he fails to complete the course on time, the department council teaching the course may approve the assignment of an IC grade for this course in his record.

Article Twenty-Eight

The grades a student earns in each course are calculated as follows:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
<th>Grade Code</th>
<th>GPA (out of 5.00)</th>
<th>GPA (out of 4.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 - 100</td>
<td>Exceptional</td>
<td>A+</td>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>90 - less than 95</td>
<td>Excellent</td>
<td>A</td>
<td>4.75</td>
<td>3.75</td>
</tr>
<tr>
<td>85 - less than 90</td>
<td>Superior</td>
<td>B+</td>
<td>4.50</td>
<td>3.50</td>
</tr>
<tr>
<td>80 - less than 85</td>
<td>Very Good</td>
<td>B</td>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>75 -less than 80</td>
<td>Above Average</td>
<td>C+</td>
<td>3.50</td>
<td>2.50</td>
</tr>
<tr>
<td>70 - less than 75</td>
<td>Good</td>
<td>C</td>
<td>3.00</td>
<td>2.00</td>
</tr>
<tr>
<td>65 - less than 70</td>
<td>High Pass</td>
<td>D+</td>
<td>2.50</td>
<td>1.50</td>
</tr>
<tr>
<td>60 - less than 65</td>
<td>Pass</td>
<td>D</td>
<td>2.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Less than 60</td>
<td>Fail</td>
<td>F</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Implementation Rules of Article Twenty-Eight

1. The student's final course grade will be one of the nine levels mentioned in the Article and his grades will be calculated in accordance with this distribution. The course instructor may consider other known assessment methods such as the grade average and the standard deviation in determining the student's end-of-course grade which reflects his achievement in the course.

2. The grade AU will be assigned to students who attend a course as auditors without being given any grades, regardless of their performance in the course. The effect of this assignment on the student's cumulative or semester grade is the same as the grade "No grade-Pass" or NP. However, if the instructor informs the Deanship of Admissions & Registration that the student was absent for more than one third of the classes, the course will be eliminated from his record. See Implementation Rules for Article 8.

3. The grades "No grade-Pass (NP)" or "No grade-Fail (NF)" are assigned for courses offered on the basis of pass or fail.

4. If a student is registered in the Cooperative Program in summer semester and is assigned an IP grade in it, the IP grade will be changed to:
 a. NP grade, if the student passes the Cooperative Program.
 b. F grade, if the student fails the Cooperative Program.

5. The grade "Withdrawn with Pass (WP)" or "Withdrawn with Fail (WF)" is given in accordance with Implementation Rules for Article 13.

Article Twenty-Nine

In accordance with the requirements of Article 19, and based on the cumulative Grade Point Average achieved by a graduating student, his graduation rank is assigned to one of the following:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Range of Cumulative GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out of 5.00</td>
</tr>
<tr>
<td>1.</td>
<td>Excellent</td>
</tr>
<tr>
<td>2.</td>
<td>Very Good</td>
</tr>
<tr>
<td>3.</td>
<td>Good</td>
</tr>
<tr>
<td>4.</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Article Thirty

First honors will be granted to graduating students who achieve a cumulative GPA of 4.75 - 5.00 (out of 5.00) or 3.75 - 4.00 (out of 4.00). Second honors will be granted to graduating students who achieve a cumulative GPA of 4.25 - less than 4.75 (out of 5.00) or 3.25 - less than 3.75 (out of 4.00).

In order to be eligible for the first or the second honors the student:
(a) must not have failed in any course at the university he is currently attending or any other university;
(b) must have completed all graduation requirements within a period of duration ranging between the maximum and minimum limits for completing the program of study in a college;
(c) must have completed 60% or more of the graduation requirements at the university from which he graduates.

Implementation Rules of Article Thirty

1. Third honors will be granted, at the time of graduation, to students who achieve a cumulative GPA of more than 3.00 (out of 4.00), and the conditions for offering first and second honors do not apply. However, they must fulfill the terms of paragraphs (b) and (c) of Article 30.

2. The provisions of (a) of Article 30 do not apply to a student who has failed in any Preparatory Year course.

3. At the end of each semester, the Deanship of Admissions & Registration records the names of distinguished students on the University distinction list, on the basis of their semester GPA and the quality points earned in this semester, as follows:

<table>
<thead>
<tr>
<th>Distinction</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester GPA & Quality Points</td>
</tr>
<tr>
<td>First Distinction</td>
<td>3.75 - 4.00 & 60 or above</td>
</tr>
<tr>
<td>Second Distinction</td>
<td>3.50 - 3.74 & 56 or above</td>
</tr>
<tr>
<td>Third Distinction</td>
<td>3.00 - 3.49 & 48 or above</td>
</tr>
</tbody>
</table>

4. A student earns the rank of 'Excellent' for an academic year if he achieves one of the distinction ranks of paragraph 3, in both the first and second semesters of that year.

5. A student receives his distinction reward remuneration in the semester in accordance with the Regulations for Financial Affairs in the Saudi Universities.

FINAL EXAMINATION PROCEDURES

Article Thirty-One

The college council may set up a committee to cooperate with the departments in organizing the activities related to the final examination. This committee's charges should include reviewing of mark sheets and submitting them to the relevant committee within three days from the examination date of the course.
Article Thirty-Two
The college council may apply the principle of strict confidentiality in the final examinations procedures.

Implementation Rules of Article Thirty-Two
A course instructor or coordinator should apply caution and confidentiality in examinations procedures.

Article Thirty-Three
A course instructor prepares the examination questions. However, if the need arises, the college council may assign another teacher to do the same, based on the recommendation of the department Chairman.

Article Thirty-Four
A course instructor grades the final examination papers and if necessary the department Chairman may assign one or more additional instructors to participate in the grading process. The college council may also assign the grading process to another instructors(s), when the need arises.

Implementation Rules of Article Thirty-Four
In the case of common examinations for a multi-section course, the grading of the examination may be assigned to course instructors regardless of which sections they teach.

Article Thirty-Five
The instructor who corrects the final exam, and records the marks obtained by students on the designated grade list, signs his name on the grade sheet and has it countersigned by the department Chairman.

Implementation Rules of Article Thirty-Five
1. The Deanship of Admissions & Registration determines the procedures for submitting final grades in accordance with the dates specified in the academic calendar. Course instructors submit the students' grades accordingly.

2. No grade shall be corrected or changed after the submission of the grade records to the Deanship of Admissions & Registration without a written request from the course instructor that includes proper justifications. Such request must be endorsed by the department Chairman. The Dean of Admissions & Registration should be informed of the change no later than the beginning of the final examination period of the next term. Only the new grade will appear in the student's record.

Article Thirty-Six
No student is to be given more than two examinations in one day. The University Council may allow for exceptions to this rule.
Implementation Rules of Article Thirty-Six

1. The Deanship of Admissions & Registration schedules the final examinations in such a way that no student is given more than two exams in one day.

2. Every semester the Deanship of Admissions & Registration prepares the schedule of the final examinations listing the date, time and location of examinations. The following considerations are observed:

 (a) The final examinations schedule must be maintained free from conflicts to the maximum extent possible.

 (b) The classrooms and auditoria in which the examinations shall be held are reserved.

 (c) The departments and students are informed by an announcement of the schedule of final examinations at least one week before the commencement of the final examinations period as specified in the University's academic calendar.

3. All course instructors and students should abide by the examination schedule prepared by the Deanship of Admissions & Registration.

4. In the event of a conflict in a student's final exams, the course instructors provide make-up examinations for such courses with the approval of the Dean of Admissions & Registration and the chairmen of the departments concerned. The make-up exam is to be given during the final examination period.

5. The schedule of a final examination of a certain course may be changed for justifiable reasons upon the recommendation of the course instructor and the department Chairman. The college council, in coordination with the Deanship of Admissions & Registration, decides on such cases. The recommended new date and time of the final exam of this course must fall within the final examination period.

6. An instructor of a course which does not require final examinations, as per its approved description, may give alternative examinations or homework assignments to the students instead of the final examination.

Article Thirty-Seven

No student will be allowed to sit for a final examination after the lapse of 30 minutes from the beginning of the examination. Also, no student will be allowed to leave the examination venue less than 30 minutes after the beginning of the examination.

Article Thirty-Eight

Cheating, or attempting to cheat, or violating instructions and examination regulations shall render the offender subject to punishment in accordance with the Student Disciplinary Rules as issued by the University Council.

Implementation Rules of Article Thirty-Eight

1. Cheating is an act of dishonesty and faculty members and students must maintain trust and honesty to ensure and protect the integrity of grades.
2. All academic work or requirements assigned to a student must be carried out by him without any unauthorized aid of any kind.

3. Instructors must exercise due professional care in the supervision and verification of academic work so that honest effort on the part of the students will be positively encouraged.

4. A course instructor who discovers that a student is cheating or helps in cheating in homework assignments, quizzes or any other requirements of the course shall assign for the student a zero grade in that work. The instructor shall report in writing the case and his recommendations to the department Chairman who, in turn, shall submit the case to the Dean of the college. After deliberating the case, the college council, may review the penalty or approve the instructor's decision(s) or give an F grade to the student in the course, or else if further action is required refer it to the Student Affairs Committee for review and submitting its recommendation to the Rector of the University based on the Student Disciplinary Rules. A student has the right to appeal to the Dean of Student Affairs within one week of notification of the disciplinary decision.

5. A course instructor or a supervisor of a course examination who discovers that a student is cheating, attempting to cheat or helps in cheating in any of the written examinations must not allow the student to continue in the examination, and the student deserves an F grade in that course. The instructor shall report the case in writing to the department Chairman who, in turn, shall submit the case to the Dean of the college. After deliberating the case, the college council may decide:

 (a) that the student does not deserve the F grade. In this case, the instructor gives the student a make-up exam;
 (b) that the student deserves the F grade. In this case, the college council refers the case to the Student Affairs Committee for review and submitting its recommendation to the Rector of the University based on the Student Disciplinary Rules. A student has the right to appeal to the Dean of Student Affairs within one week of notification of a disciplinary decision.

Article Thirty-Nine

If the need arises, the council of the college which offers the course may agree to the re-grading of examination papers within a period not exceeding the beginning of the next semester's examinations.

Implementation Rules of Article Thirty-Nine

A student who feels strongly that he has received a grade that is demonstrably inaccurate, or that the grading was unfair, must promptly discuss the matter with the instructor of the course. If the student and his instructor are unable to arrive at a mutually agreeable solution, the student may forward an official appeal to the Chairman of the department offering the course, no later than the end of the fourth week of the next semester. The department Chairman will investigate whether the appeal is justified by reviewing the instructor's evaluation of the student based on the student's class work and final examination scores. The department Chairman will then take appropriate action, if he deems necessary, by submitting the student's appeal to the college council to decide on the case.
Article Forty

Following the recommendation of the relevant department council, the college council determines the duration of the final written examinations which, in any case, should not be less than one hour and not more than three hours' duration.

Article Forty-One

Consistent with the provisions of Articles 31-40 of this document, the University Council establishes the regulations that govern the final examination procedures.

TRANSFER

TRANSFER FROM ONE UNIVERSITY TO ANOTHER

Article Forty-Two

The transfer of a student from outside the University may be accepted under the following conditions.

a. The student should be enrolled at a recognized college or university.
b. The student must not have been dismissed from that university for disciplinary reasons.
c. The student must satisfy the transfer provisions as determined by the University Council.

Implementation Rules of Article Forty-Two

All transfer applications are submitted to the Admission & Academic Standing Committee which studies the application and ensures that the applicant fulfills the requirements of this article, in addition to any other provisions the Committee deems necessary in coordination with the colleges concerned.

Article Forty-Three

The college council shall review the courses taken by the student outside the University based on the recommendations of the departments which offer equivalent courses. The courses evaluated as equivalent will be transferred to the student's record but will not be included in the calculation of his cumulative GPA.

Implementation Rules of Article Forty-Three

In order to get transfer of credit for any course taken outside the University, the following provisions shall be observed:
1. the student should have completed the Preparatory-Year program, or have been admitted to the university as freshman student;
2. the student should have obtained grade of C or higher in that course;
3. the course was taken at a recognized college or university;
4. the course is equivalent in its contents to one of the courses which are included in the KFUPM degree requirements. Otherwise, it may be counted as an elective with the approval of the council of the department offering the degree program and the college council concerned.
5. The grade earned by the student in the course is not included in the student's cumulative GPA.
6. Courses taken at two different institutions at the same time are not considered for transfer of credit.
7. Courses taken at another institution simultaneously while studying at KFUPM (in the same semester) are not considered for transfer of credit.

Article Forty-Four

If, after his transfer, it is discovered that a student had been dismissed from his previous university for disciplinary reasons, his enrollment will be considered canceled as from the date of acceptance of his transfer to the University.

Article Forty-Five

The transfer of a student from one university to another during any semester takes place in accordance with the procedures and the dates announced by the university to which the student is transferring, under the general transfer rules.

TRANSFER FROM ONE COLLEGE TO ANOTHER WITHIN THE SAME UNIVERSITY

Article Forty-Six

A student may be transferred from one college to another within the University in accordance with rules established by the University Council.

Implementation Rules of Article Forty-Six:

1. A student may transfer from one college to another within the University before he completes the fourth academic level in his undergraduate studies.
2. The student should continue to study all the courses he registered for at the level preceding the transfer, in compliance with the adding and dropping rules.
3. The transfer from one college to another will appear in the academic record of the student starting the term following the transfer.
4. A student is allowed a maximum of two transfers from one college to another.

Article Forty-Seven

The academic record of a student transferred from one college to another includes all the courses he has studied together with the grades and the semester and cumulative GPA's obtained throughout his period of study at the University.
TRANSFER FROM ONE MAJOR TO ANOTHER WITHIN
THE SAME COLLEGE

Article Forty-Eight

With the approval of the Dean of the relevant college, a student may transfer from one major to another within the same college according to the rules established by the University Council.

Implementation Rules of Article Forty-Eight

1. A student may transfer from one major to another within his college at any time before he completes the fourth academic level in his undergraduate studies. The college council may consider exceptional cases after that level.
2. The transfer to the new major will appear in the academic record of the student starting the term following the transfer.
3. A student is allowed a maximum of two transfers from one major to another within the same college. The college council may consider exceptional cases.

Article Forty-Nine

The academic record of a student transferring from one major to another will include all the courses the student has taken, including the grades and the semester and cumulative GPA's obtained throughout his period of study at the University.

VISITING STUDENTS

Article Fifty

A "visiting student" is a student who studies some courses at another university or in one branch of the university to which he belongs without transferring. Equivalency for such courses shall be granted according to the following rules.

a. The student must obtain prior approval from the college at which he is studying.
b. The student should be enrolled at a recognized college or university.
c. The course the student is taking outside his university should be equivalent to one of the courses included in his degree requirements.
d. If the visiting student is studying in one of the branches of the university to which he belongs, the case should be dealt with in accordance with Article 47.
e. The University Council determines the maximum credit hours to be allocated to a visiting student from outside the University.
f. The course grades credited to the visiting student will not be considered in his cumulative GPA.
g. The University Council may establish other conditions regarding visiting students.
Implementation Rules of Article Fifty

Case One: A student from KFUPM visiting another university

(a) The student should submit to the Chairman of the academic department a written application indicating the course(s) he intends to study at the other university. The department council sets up a committee to evaluate these courses and suggest, if applicable, the equivalent courses at KFUPM.

(b) After completing the course(s) the student submits a formal request to the Deanship of Admissions & Registration for transfer of credit. The final decision whether or not to accept a course for transfer is made in compliance with the Implementation Rules of Article 43.

(c) Notwithstanding the degree requirements, the maximum total credit hours that can be transferred from outside the University is 48 and the student's grade in each transferred course must not be lower than C. These grades are not included in the cumulative or major GPA.

(d) The maximum number of semesters a student can study outside the University is three consecutive or non-consecutive semesters (except summer semesters).

(e) The student will receive KFUPM stipend as per the governing rules and regulations for stipends.

(f) The student can apply to get approval to study a summer term in other University only if:

 i. The summer term is part of the Study Abroad Program or;
 The student is a candidate to graduate in that summer or the following term and the registered course is not offered at KFUPM in the summer term.

 ii. The course(s) is/are equivalent to KFUPM course(s) in terms of credit hours, content and mode of delivery.

 iii. The delay in taking the course on time is for reasons beyond the control of the student.

Case Two: A student from another university visiting KFUPM

(a) The student should submit approval from the institution at which he is currently studying, indicating justifications for taking the courses outside his institution. The student must satisfy all the requirements of the courses for which he is intending to register.

(b) The courses for which the student wishes to register must be available and not fully enrolled.

(c) All courses should be recorded in a unified academic record, including all courses studied at this University while a regular or visiting student.

(d) The student will not receive KFUPM stipend and will not be provided with Textbooks.
GENERAL RULES

Article Fifty-One

These regulations supersede all the preceding rules and regulations established for study and examinations at the undergraduate level.

Article Fifty-Two

The University Council may set up implementation rules which will not contradict these regulations.

Implementation Rules of Article Fifty-Two

The University Council reserves the right to interpret and amend the implementation rules accompanying these regulations.

Article Fifty-Three

The Higher Education Council reserves the right to interpret these regulations.
APPENDICES

APPENDIX (A)

Academic Records and Grade Codes

Academic Record

The academic record is a statement which explains the student's academic progress. It includes the courses studied in each term with course numbers, codes, number of credit-hours, the grades attained and the codes and points of these grades. The record also shows the semester, cumulative GPA and the student's academic status in addition to the courses from which a transferred student is waived.

Grade Codes

<table>
<thead>
<tr>
<th>Letter Grades</th>
<th>Marks</th>
<th>Points</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>95-100</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>A</td>
<td>90 - Less than 95</td>
<td>3.75</td>
<td>4.75</td>
</tr>
<tr>
<td>B+</td>
<td>85 - Less than 90</td>
<td>3.50</td>
<td>4.50</td>
</tr>
<tr>
<td>B</td>
<td>80 - Less than 85</td>
<td>3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>C+</td>
<td>75 - Less than 80</td>
<td>2.50</td>
<td>3.50</td>
</tr>
<tr>
<td>C</td>
<td>70 - Less than 75</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>D+</td>
<td>65 - Less than 70</td>
<td>1.50</td>
<td>2.50</td>
</tr>
<tr>
<td>D</td>
<td>60 - Less than 65</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>F</td>
<td>Less than 60</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DN</td>
<td>-</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>NP</td>
<td>60 or above</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NF</td>
<td>Less than 60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
APPENDIX (B)

Example of the Calculation of Semester and Cumulative GPA

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr Hrs</th>
<th>%</th>
<th>Code</th>
<th>GPA</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>2</td>
<td>85</td>
<td>B+</td>
<td>4.50</td>
<td>9</td>
</tr>
<tr>
<td>CHEM 324</td>
<td>3</td>
<td>70</td>
<td>C</td>
<td>3.00</td>
<td>9</td>
</tr>
<tr>
<td>MATH 235</td>
<td>3</td>
<td>92</td>
<td>A</td>
<td>4.75</td>
<td>14.25</td>
</tr>
<tr>
<td>PHYS 312</td>
<td>4</td>
<td>80</td>
<td>B</td>
<td>4.00</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>48.25</td>
</tr>
</tbody>
</table>

\[
\text{First Semester GPA} = \frac{\text{Total Quality Points} (48.25)}{\text{Total Credits} (12)} = 4.02
\]

Or

\[
\text{First Semester GPA} = \frac{\text{Total Quality Points} (36.25)}{\text{Total Credits} (12)} = 3.02
\]

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Cr Hrs</th>
<th>%</th>
<th>Code</th>
<th>GPA</th>
<th>Quality Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 104</td>
<td>2</td>
<td>96</td>
<td>A+</td>
<td>5.00</td>
<td>10</td>
</tr>
<tr>
<td>CHEM 327</td>
<td>3</td>
<td>83</td>
<td>B</td>
<td>4.00</td>
<td>12</td>
</tr>
<tr>
<td>MATH 314</td>
<td>4</td>
<td>71</td>
<td>C</td>
<td>3.00</td>
<td>12</td>
</tr>
<tr>
<td>PHYS 326</td>
<td>3</td>
<td>81</td>
<td>B</td>
<td>4.00</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>

\[
\text{Second Semester GPA} = \frac{46}{12} = 3.83 \quad \text{or} \quad \text{Second Semester GPA} = \frac{34}{12} = 2.83
\]

\[
\text{Cumulative GPA} = \frac{\text{Total Quality Points} (48.25 + 46)}{\text{Total Credits} (12 + 12)} = 3.93 \quad \text{or} \quad \frac{36.25 + 34}{12 + 12} = 2.93
\]
APPENDIX (C)

The Grading System Applicable at KFUPM

Grade Codes

<table>
<thead>
<tr>
<th>Letter Grades</th>
<th>Marks</th>
<th>Points</th>
<th>Grades in English</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>95-100</td>
<td>4.00</td>
<td>5.00</td>
</tr>
<tr>
<td>A</td>
<td>90 - Less than 95</td>
<td>3.75</td>
<td>4.75</td>
</tr>
<tr>
<td>B+</td>
<td>85 - Less than 90</td>
<td>3.50</td>
<td>4.50</td>
</tr>
<tr>
<td>B</td>
<td>80 - Less than 85</td>
<td>3.00</td>
<td>4.00</td>
</tr>
<tr>
<td>C+</td>
<td>75 - Less than 80</td>
<td>2.50</td>
<td>3.50</td>
</tr>
<tr>
<td>C</td>
<td>70 - Less than 75</td>
<td>2.00</td>
<td>3.00</td>
</tr>
<tr>
<td>D+</td>
<td>65 - Less than 70</td>
<td>1.50</td>
<td>2.50</td>
</tr>
<tr>
<td>D</td>
<td>60 - Less than 65</td>
<td>1.00</td>
<td>2.00</td>
</tr>
<tr>
<td>F</td>
<td>Less than 60</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>IP</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IC</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DN</td>
<td>–</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>NP</td>
<td>60 or above</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NF</td>
<td>Less than 60</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>W</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WP</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WF</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AU</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
ACADEMIC COLLEGES,
DEPARTMENTS AND PROGRAMS
Academic Colleges, Departments, and Programs

<table>
<thead>
<tr>
<th>College of Applied and Supporting Studies</th>
<th>College of Environmental Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Preparatory Year Program</td>
<td>• Architectural Engineering</td>
</tr>
<tr>
<td>• Skills Development Program</td>
<td>• Architecture</td>
</tr>
<tr>
<td>• Department of Islamic and Arabic Studies</td>
<td>• City and Regional Planning</td>
</tr>
<tr>
<td>• Physical Education Department</td>
<td></td>
</tr>
<tr>
<td>• Department of General Studies</td>
<td></td>
</tr>
<tr>
<td>• English Language Department</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Applied Engineering</th>
<th>College of Industrial Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Applied Aerospace Engineering</td>
<td>• Accounting and Management</td>
</tr>
<tr>
<td>• Applied Chemical Engineering</td>
<td>• Information Systems</td>
</tr>
<tr>
<td>• Applied Civil and Environmental Engineering</td>
<td>• Accounting</td>
</tr>
<tr>
<td>• Applied Electrical Engineering</td>
<td>• Management Information Systems</td>
</tr>
<tr>
<td>• Applied Mechanical Engineering</td>
<td>• Geology</td>
</tr>
<tr>
<td></td>
<td>• Geophysics</td>
</tr>
<tr>
<td></td>
<td>• Petroleum Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Engineering Sciences</th>
<th>College of Petroleum Engineering & Geosciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aerospace Engineering</td>
<td>• Geosciences</td>
</tr>
<tr>
<td>• Chemical Engineering</td>
<td>• Geology</td>
</tr>
<tr>
<td>• Civil and Environmental Engineering</td>
<td>• Geophysics</td>
</tr>
<tr>
<td>• Electrical Engineering</td>
<td>• Petroleum Engineering</td>
</tr>
<tr>
<td>• Mechanical Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College of Computer Sciences and Engineering</th>
<th>College of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Computer Engineering</td>
<td>• Biology</td>
</tr>
<tr>
<td>• Information and Computer Science</td>
<td>• Chemistry</td>
</tr>
<tr>
<td>Computer Science</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>Industrial Chemistry</td>
</tr>
<tr>
<td>• Systems Engineering</td>
<td>• Earth Sciences</td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>Geology</td>
</tr>
<tr>
<td>Control and Instrumentation Systems Engineering</td>
<td>Geophysics</td>
</tr>
<tr>
<td></td>
<td>• Mathematics and Statistics</td>
</tr>
<tr>
<td></td>
<td>Mathematics</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>Actuarial Sciences</td>
</tr>
<tr>
<td></td>
<td>• Physics</td>
</tr>
</tbody>
</table>
COLLEGE OF APPLIED AND SUPPORTING STUDIES

Dean: Dr. Ismail Budaiwi

PROGRAMS

PREPARATORY YEAR
SKILLS DEVELOPMENT

DEPARTMENTS

ISLAMIC AND ARABIC STUDIES
PHYSICAL EDUCATION
GENERAL STUDIES
ENGLISH LANGUAGE
The College of Applied and Supporting Studies was established in 2007 to provide core courses in disciplines not covered by the other colleges. The College is responsible for developing in all KFUPM students the crucial knowledge, skills, attributes and values to be competitive in the market place and to realize their role as leaders in their communities. Through its programs and the courses offered, the College provides University students with the opportunities to expand their horizons and vision, reinforce their ethical and moral values, develop their communication skills and enhance their personal characteristics and positive behavior.

The College is committed to having a major influence on KFUPM graduates by maintaining close contact with both students and academic departments, and by continuously assessing and developing its programs and courses to accommodate the changing needs and conditions required to accomplish its set objectives and goals.

Vision

To become a leading platform for fostering students’ academic and professional success, excellence in research and advancement in community service.

Mission

1. To prepare students to become successful members of KFUPM and the community by:
 - providing them with sound basic academic and general knowledge.
 - empowering them with, values, ethics, skills, and healthy attitudes.
 - enabling students to become well rounded individuals.
2. To enrich and complement the curriculum of all KFUPM programs through the supporting humanities and social courses offered by the college.
3. To engage CASS with the community through services and research of mutual interest.

Goals

CASS goals reflect its strategic issues inferred from the SWOT analysis and aligned with KFUPM’s goals and strategies.

1- Build a highly qualified national and international faculty body.
2- Develop students' English language proficiency to successfully pursue their undergraduate education and future careers.
3- Improve student retention rate in the Preparatory Year Program.
4- Cultivate students’ knowledge in social sciences and humanities as well as values, skills and attitudes.
5- Excel in community-related research and services.

College Programs and Departments

The College comprises two programs: the Preparatory Year Program (PYP) and the Skills Development Program; and four supporting academic departments: the Islamic and Arabic Studies Department; the Physical Education Department; the General Studies Department; and the English Language Department. The Departments offer courses that are core requirements for all KFUPM students.
Preparatory Year Program

The PYP aims to prepare students for entry to undergraduate studies by exposure to various academic programs and courses including:

1. Preparatory English Program.
2. Preparatory Math Program.
3. Preparatory Science and Engineering Program.

In addition, the PYP offers students extra-curricular activities to help them adjust to the University life.

Skills Development Program

The program aims to enhance students' personal skills and train students to attain high qualifications for their future career. The program enables students to gain experience in a variety of skills through: volunteer work; community and student activities; training programs; public lectures; meetings with successful businessmen; on-line Skills Courses (e.g., Thomson NETg); skills infusion in academic curriculum; and reading skills publication.

Islamic & Arabic Studies Department

The department offers courses in Islamic ideology, professional ethics and human rights in Islam, objective writing, communication skills, Arabic and Islamic history, Arabic literature as well as other courses in Islamic and Arabic studies.

Physical Education Department

The Department offers courses to Preparatory Year and Undergraduate students designed to raise their awareness of the following aspects: personal health; physical fitness; and knowledge of sports. The department also offers special courses for students with special needs. In addition, the department organizes activities to raise community awareness about healthy life style and physical fitness.

General Studies Department

The department offers students opportunities to broaden their knowledge and reinforce their skills through courses in the following areas: Sociology; International Relations; Psychology; Anthropology; History; as well as other areas in social sciences and humanities.

English Language Department

The department is responsible for improving students' English Language and communication skills to better prepare them for their academic studies and future career. The Department offers three courses in Academic Discourse (ENGL 101); Introduction to Report Writing (ENGL 102), and Academic and Professional Writing (ENGL 214).
Preparatory Year Program

Assistant Dean for Prep Year Affairs: Dr. Abdulaziz Al-Assaf

Since the establishment of KFUPM in 1963, the Preparatory Year Program has been a core component of the University’s academic curriculum. The Prep Year Program is continually developing concurrent with KFUPM academic programs.

Vision

The Prep Year Program (PYP) strives to ensure that high school graduates of the Kingdom of Saudi Arabia become successful participants in the KFUPM community and future leaders in their fields of study.

Mission

The PYP aims to ensure that students attain the level of proficiency in academia necessary to participate fully as KFUPM students. While academic skills are important, PYP provides students not only with a sound basis in academic skills, but also seeks to develop students into well-rounded individuals. The curriculum is designed to ensure that each student maintains a sense of pride in his native culture.

Goals

The PYP program at KFUPM prepares newly admitted students for undergraduate studies at the University and aims to enhance their opportunities to succeed and excel through:

1. Improving students’ English language proficiency to prepare them for University studies.
2. Reviewing and reinforcing students’ knowledge of Mathematical and analytical techniques through problem solving and their ability to relate to various Math concepts.
3. Consolidating students’ knowledge of basic sciences, providing necessary skills for effective learning, assisting students in choosing their academic majors through career guidance, as well as promoting student’s physical well-being.

Prep Year Program Calendar of Study

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Life Skills</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

The Prep Year program is composed of three interdependent programs: English, Mathematics, and Science & Engineering.
Preparatory English Program (PEP)

| Director: Paul Brown |

Faculty

<table>
<thead>
<tr>
<th>Abdullah</th>
<th>Graham</th>
<th>McCarthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amison</td>
<td>Gray</td>
<td>McKay</td>
</tr>
<tr>
<td>Appling</td>
<td>Green</td>
<td>Moore, D.B.</td>
</tr>
<tr>
<td>Armstrong</td>
<td>Hands</td>
<td>Moore, H.M.</td>
</tr>
<tr>
<td>Baker</td>
<td>Hennessey</td>
<td>Mountjoy</td>
</tr>
<tr>
<td>Brigham</td>
<td>Hillmer</td>
<td>Owen</td>
</tr>
<tr>
<td>Brooks</td>
<td>Hind</td>
<td>Oxley</td>
</tr>
<tr>
<td>Brookshire</td>
<td>House</td>
<td>Paddock</td>
</tr>
<tr>
<td>Brown</td>
<td>Hudson</td>
<td>Pearson</td>
</tr>
<tr>
<td>Burridge</td>
<td>Johnston</td>
<td>Poores</td>
</tr>
<tr>
<td>Carey</td>
<td>Jones</td>
<td>Powell</td>
</tr>
<tr>
<td>Clermont</td>
<td>Kearney</td>
<td>Robben</td>
</tr>
<tr>
<td>Combes</td>
<td>Knight</td>
<td>Rycroft</td>
</tr>
<tr>
<td>Debenham</td>
<td>Knott</td>
<td>Silke</td>
</tr>
<tr>
<td>Fernelius</td>
<td>Kriel</td>
<td>Sliwa</td>
</tr>
<tr>
<td>Fletcher</td>
<td>Lake</td>
<td>Smith</td>
</tr>
<tr>
<td>Fogarty</td>
<td>Lavelle</td>
<td>Snow</td>
</tr>
<tr>
<td>Foord</td>
<td>Lewis</td>
<td>Snyman</td>
</tr>
<tr>
<td>Garlington</td>
<td>MacDonald</td>
<td>Turbett</td>
</tr>
<tr>
<td>Gaylard</td>
<td>Mann</td>
<td>Watson</td>
</tr>
<tr>
<td>Gowlett</td>
<td>Marsh</td>
<td>Wick</td>
</tr>
</tbody>
</table>
The Preparatory English Program (PEP) is responsible for developing the English proficiency required in a university where English is the language of instruction. This intensive five-course (half-semester) program, to which all new students are initially admitted, is designed to consolidate and develop the basic knowledge of English that the student has acquired in school. Four hours of English instruction per day are given. The course is specifically designed to help students develop all four-language skills - reading, listening, writing and speaking - that they will need in order to succeed in their academic studies. Grammar and vocabulary instruction support these skills, as do projects and computer-based exercises. Alongside the development of language, the PEP courses also aim to help students develop the study skills and self-discipline necessary for success in their academic careers.

The Modules are aligned on a continuum, where objectives and learning outcomes are progressive throughout the entire program. The skills developed in one module become the means for advancing onto the next module. At the lower levels, Modules ENGL00 and ENGL01 incorporate General English course books with the inclusion of ESP supplements. Modules ENGL02 and ENGL03 focus more on Academic Skills development, and by Module ENGL04, students have the working grounds for engaging in Integrated Skills practice. The objectives for reading, listening, use of English, speaking and writing do in fact overlap from one Module to the next, which ensures that the students continue building upon the skills they have developed throughout the program.

Through the integrated Preparatory English Program, the students’ ability to cope with university-level work in a technical environment is improved. A particularly advantageous aspect of the Preparatory English Program is that some of the course materials are designed, written, and produced by the program’s own staff or the specific needs of KFUPM students.

The student who successfully completes the program is equipped with a solid basis of English, on the strength of which he is able to commence his freshman studies. However, those students who can demonstrate that their use of English is already at a high-enough level on entering the Preparatory Year, either by their performance in internationally-recognized examinations or by passing the PEP promotion exams, can bypass some or all of the five PEP courses, a few proceeding directly to freshman studies.

Other Features of the PEP

The PEP moved to new premises and is well equipped with modern educational aids. Facilities exist for recording and playing both audio and video material. English language instruction also takes place in the Computer Assisted Language Learning (CALL) Labs. There are six labs, with 180 workstations connected to a server on a Local Area Network (LAN). Students have access to a range of material prepared by faculty members as well as commercial software and the facility to produce printed copies of written assignments.

The program serves both the KFUPM community and the community at large in a program of continuing education. Evening courses in English are offered each semester, and other, specialized courses are produced to meet the needs of local industry.

The English Language Center also provides professional editing services through the University Editing Board. Papers, theses and other documents prepared by professors and lecturers at KFUPM published in academic journals and elsewhere, are edited by experienced Preparatory Year English faculty members.
The Program also conducts examinations to check the English proficiency of non-KFUPM graduate students who apply for post-graduate studies. Based on these results, recommendations are sent to the Dean of Graduate Studies about their proficiency in English and their ability to pursue graduate studies at the University.

The Preparatory English Program does not grant a degree but, for all Preparatory Year students, success in the PEP (a grade C in all courses) is a requirement for promotion to the freshman year.
The Preparatory Year Math Program consists of two courses. The first course is Math 001 (College Algebra and Trigonometry I), which contains the standard topics of college Algebra, whereas the second course, Math 002 (College Algebra and Trigonometry II), contains trigonometry and extended topics in college Algebra.

The program aims to review and reinforce the student’s knowledge of mathematical and analytical skills through the medium of English. In addition, the program seeks to develop student’s writing skills in Math through interrelated logical procedures.

The program is designed such that students are continuously involved in class work activities, mainly solving problems during the recitation hours and through weekly online assignments and tests. Peer tutoring is an essential component of the learning process. Weekly seminars are conducted in which students can enhance their knowledge and have the opportunity to share and exchange ideas with fellow students and their instructors.
The PSEP was formed on May 17, 2010. This department comprises the following courses: PYP 001 (Preparatory Physical Science), PYP 002 (Preparatory Computer Science), PYP 003 (University Life Skills), and PYP 004 (Preparatory Engineering Technology). Half of the newly admitted students take PYP 001 and PYP 003 in the first semester, and PYP 002 and PYP 004 in the second semester, or vice versa.

The PSEP aims to provide students with a basic understanding of science and engineering concepts as well as the necessary scientific and study skills to prepare them for undergraduate studies.
Skills Development Program

The mission of the skills program is to support the University in accomplishing its mission with relation to providing opportunities for its students to develop their skills and attributes. The program aim is to enhance students' personal skills to achieve high qualifications and prepare them for their future careers.

The importance of such a program arises from the findings of scientific research showing that the success of an individual and his efficiency in social life and career does not rely mainly on his education and/or his intelligence. Rather, an individual’s personal skills play an important role in determining his success and efficiency.

In order to achieve our goals, research and surveys have been conducted and twenty-six different skills have been identified as the most important and most necessary skills for student success in their studies and future working life.

A Skills Card has been designed which lists all the 26 skills, divided into three categories:

1) Mental Skills
2) Interpersonal Skills
3) Personal Skills

To achieve the objectives the program established five units under the supervision of the Assistant Dean of skill development:

Training unit:

This unit is responsible for designing, implementing, and evaluating training programs which cover the skills listed in the Skills Card such as communications skills, team building, problem solving, planning, thinking skills, etc. The unit is also supervising the contents of different publications addressing different skills in both languages (Arabic & English) such as brochures, manuals, and books. It also assists the University’s library in selecting books which contribute to the development of the students’ skills. The unit also organizes lectures with highly successful people from industry and the private sector to relate their success stories to the students.

Gifted students unit:

This unit is responsible for designing programs which promote student research. The program focuses in three different tracks:

1- Research by discipline.
2- Interdisciplinary research (Student project such as Formula 1 students’ version).
3- Participation of students in national and international competitions
The unit is also responsible for creating a data base system which includes students who have patents and research papers, and who have participated in local, regional, and international scientific conferences.

Voluntary work unit:

The University took the initiative to establish the Voluntary Work Unit as part of the skills development program under the College of Applied and Supporting Studies. The Voluntary work unit is one of the schemes of the University through which students can provide community services to the larger community of the Eastern Province in coordination with non-profit organizations. These activities are diverse and include: social, cultural, environmental, health care, educational, humanitarian, and other initiatives. Also students volunteer through professional societies based on their future careers.

Through this participation in volunteering, the Voluntary Work unit aims that students through the participation in volunteering efforts will improve their skills, discover their potential, and fulfill part of their social responsibility towards their community and nation.

The unit also promotes volunteerism amongst students and the community at large through designing and organizing programs that are new, professional, and based on best practices. Also, the unit is working in developing a model to manage volunteers, which has fifteen components, which includes: a rewarding system, membership system, marketing system, training program, etc. Also, the unit supervises the infusion of community services in the curriculum through service-learning models. In addition, one of the core responsibilities of the unit is to institutionalize the efforts and ensure it is sustainability.

Infusion of skills unit:

This unit works in collaboration with the Deanship of Academic Development (DAD) to ensure the infusion of skills in the curriculum. It also works with other departments in the University to introduce Service-Learning models in some courses. The unit has been successful in converting the “University Skills” course offered in the Preparatory Year to a first-year Service-Learning course.

Data base and online training Unit:

This unit is responsible for the development of a database related to the Skills Card through which students will be able to access their profiles and keep a record of the skills they have acquired. The database system consists of three main parts:

1. Database for Skills Card:

This system records all the activities related to skill development, such as training, voluntary work, student activities, and academic activities, etc. In addition, comparative and cumulative participation of students in terms of skill values in different majors, departments, colleges and levels can be presented graphically as bar charts and also with numbers and percentages. Also, the participation of the students in a particular skill and attribute can be monitored in any/all majors, departments, colleges and levels.

2. Database for voluntary work and community services:
This system matches the volunteering opportunities provided by the volunteering organizations in the community with the students. It allows the organization to post their requirements and provide students with feedback upon the completion of the work. Students can also evaluate their experience with the organizations and volunteering.

3. Database for the skills program:

In this system the students can register for all the activities provided by the skills program. In addition, different surveys can be conducted through the system.

The unit also supervises the online training courses through Thomson NETG in collaboration with the ITC. These courses provide students with valuable content and flexibility in training time.
Department of Islamic and Arabic Studies

Chairman: Dr. Abdulrahman A. Howsawi

Faculty

<table>
<thead>
<tr>
<th>Afzal</th>
<th>Mubarak</th>
<th>Al-Zamil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabri</td>
<td>Almuzeini</td>
<td>Al-Assaf</td>
</tr>
<tr>
<td>Alamri</td>
<td>Al-Nemri</td>
<td>Howsawi</td>
</tr>
<tr>
<td>Al-Humeidan</td>
<td>Al-Ghahtani</td>
<td>Hussein</td>
</tr>
<tr>
<td>Aljbarat</td>
<td>Al-Qahtani</td>
<td>Ibrahim</td>
</tr>
<tr>
<td>Al-Khaledi</td>
<td>Al-Sulaiman</td>
<td>Kadi</td>
</tr>
<tr>
<td>Al-Khulaify</td>
<td>Al-Shalhoob</td>
<td>Osman</td>
</tr>
<tr>
<td>Al-Mashookhy</td>
<td>Al-Sulami</td>
<td>Sendi</td>
</tr>
<tr>
<td>Almulla</td>
<td>Altwaigery</td>
<td></td>
</tr>
<tr>
<td>Mobarak</td>
<td>Al-Zahrani</td>
<td></td>
</tr>
</tbody>
</table>
The Islamic & Arabic Studies Department (IAS) is one of the academic departments under the College of Applied & Supporting Studies (CASS). Since its establishment, the IAS department has worked in harmony with the needs of higher education in Saudi Arabia, and has remained consistent with university policy, placing great emphasis on the enhancement of Islamic culture and the moderate understanding of its meanings. The IAS department consists of two fields of study, Islamic Studies and Arabic Studies. As a supporting academic department, its role is not only limited to the academic teachings, but also includes research activities, social activities, and interaction with communities inside and outside KFUPM.

Mission

The main objectives of the IAS department are to broaden the students’ intellectual horizon in the Islamic and Arabic studies in line with the academic needs of KFUPM. This will benefit students in their professional career after graduation.

Objectives

- To enhance moral values and good behavior, and encourage students to practice the Islamic ethics.
- To develop the immunity against ideological and behavioral difference.
- To improve oral and written communication skills with useful applications and experimental activities with the aid of modern technical educational support.
- Continuous course development with the assistance of modern teaching techniques and with the cooperation of other leading academic departments.

Required Islamic Studies Courses (6 Credit Hours)

Each undergraduate student must take six credit hours (i.e. three courses) in Islamic Studies. These courses are “Belief and its Effects” (IAS 111), “Professional Ethics” (IAS 212), and “Human Rights in Islam” (IAS 322).

Required Arabic Language Courses (6 Credit Hours)

Each Arabic-speaking undergraduate student, in almost all majors, must take six credit hours (i.e. three courses) in Arabic Language. These courses are “Practical Grammar” (IAS 101), “Objective Writing” (IAS 201), and “Language Communication Skills” (IAS 301).

Elective Courses

In addition to the above, a student, in some departments, may select an elective course from: “Contemporary Islamic World” (IAS 411), “Al-Sirah Al-Nabawiyyah” (IAS 416), “Contemporary Financial Transactions in Islam” (IAS 418), and “Inimitability of Al-Quran” (IAS 419).

Courses for Non-Arabic-Speaking Students

Each non-Arabic-speaking student is required to take a sequence of three two-credit hour courses in Arabic as a “Second Language” in lieu of IAS 101, 201, and 301, as follows: “Objective Writing” (IAS 131), “Grammar and Composition” (IAS 231), and “Literature and Text” (IAS 331).
Physical Education Department

Chairman: Dr. Abdulhameed Al Ameer

Faculty

<table>
<thead>
<tr>
<th>Abu Hilal</th>
<th>Azeem</th>
<th>Ibrahim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adejumo</td>
<td>Choi</td>
<td>Kanniyan</td>
</tr>
<tr>
<td>Al Moslim</td>
<td>Hamdan</td>
<td>Rabaan</td>
</tr>
<tr>
<td>Al-Ameer</td>
<td>Hasnain</td>
<td>Tomar</td>
</tr>
<tr>
<td>Allen</td>
<td>Hassan</td>
<td>Tufekcioglu</td>
</tr>
<tr>
<td>Antony</td>
<td>Ibeid</td>
<td></td>
</tr>
</tbody>
</table>
Health education is a social science that draws its principles from the biological, environmental, psychological, physical and medical sciences to promote health and prevent disease, disability and premature death through education-driven, voluntary, behavior-change activities. Knowing how to live healthily is the secret for living a good life. This is more important in today’s society, where unhealthy diets such as fast food and unhealthy habits such as playing computer games and drug abuse are prominent. It is also necessary that students know and are able to keep themselves healthy by not giving into these external influences. Health Education develops in the students a positive attitude to take care of their health and not to neglect it and provides opportunities to apply this knowledge and practice good health habits on themselves that will last them a lifetime.

The initiation of physical education courses and activities in the realm of educational pursuits at KFUPM has contributed to shape the destiny of many brilliant students in making their life healthy, peaceful and enjoyable. As the idiom “ A sound mind in a sound body” goes, there should be a balance between brawn and brain, and this is a vital factor that leads to tranquility, peace, friendship, comradeship, serenity, and above all to the wellness of an individual.

KFUPM is the only university in the whole Gulf region to make physical education compulsory for students during their time at the university. Students have to undergo four physical education courses during their time at KFUPM, two during the preparatory year and two during the undergraduate years; in addition, there are two special courses for students with special needs which are equivalent to the undergraduate courses.

Vision

To aspire to be the leader in providing the best physical education activities to combat stress and other related diseases which are the bane of life today. The department will be at the forefront of inculcating healthy habits and providing the knowledge of how to avoid addictive behavior leading to a deterioration in health. The department aims to contribute to society by promoting the health of the nation’s citizens.

Mission

The Department’s mission is to provide a solid foundation for the future life of the students through appropriate physical education programs and health-related issues which will inculcate fitness and wellness in their lifestyles and thereby enhance the quality of their life.

Objectives

- Identify the basic physical education content, concepts and tools related to the development of the physically educated person and offer a wide variety of physical activities.
- Compile a learning plan which will enable students to understand the pedagogical process and practice it through peer and field experiences.
- Teach responsible personal and social behavior during physical activity.
- State the basic concepts and issues related to general health education programs and reduce health risks.
- Provide relief from stress and enjoyment in participation.
- Teach the specified sports, their history, laws, rules, skills and tactics.
- Encourage students to participate with confidence in sports.

Learning outcomes for students

- To understand the knowledge and skills needed for movement and so obtain the foundation for enjoyment, continued social development through physical activity and access to a physically active lifestyle.
- To understand the relationship between physical education and general health in their daily life.
- To be able to assess performance accurately and develop plans for improvement.
- To be able to reflect, plan and act in order to develop essential knowledge and understanding, attitudes, values and skills which promote healthy practices, encourage participation in regular physical activity, and support the maintenance of a healthy lifestyle.
- To learn the skills, tactics and methods of play of the specified sports.

During the first and second semesters of the preparatory year the courses offered are PE 001 and PE 002, in which the student is introduced to three weeks of health education and twelve weeks of physical education (specified sports), where swimming is a compulsory activity for all.

The students take the above courses as per the syllabus prepared by the Physical Education Department which is as follows:

<table>
<thead>
<tr>
<th>Unit</th>
<th>No. of weeks</th>
<th>Hours per week</th>
<th>Total hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Health Education</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Preparatory Physical Education (specified sports) includes 2 weeks of Pre-Test and 2 weeks of PostTest in Physical Fitness.</td>
<td>12</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

At the undergraduate level the courses offered are PE 101, PE 102 and two PE special courses, PE 201 and PE 202. In these courses student studies three weeks of health education and twelve weeks of physical education (specified sports) in each course and the number of hours per week and the total hours are the same as for the preparatory classes i.e. six hours health education and twenty-four hours of physical education making it thirty hours totally. The courses taken at the undergraduate level are either a continuation of the courses at the preparatory level but an advance stage or some new activities are introduced.

The students who are suffering from physical disabilities, deformities and the cases who are recovering from surgery or accidents receive rehabilitation through a special needs course which is a part of the 101 and 102 courses. In addition, the department also caters to the needs of under-nourished and obese students through special programs.

The physical education department also takes care of the coaching of University teams in specified games which are approved by the Saudi University Sport Federation. The teams trained by expert coaches participate in the Gulf inter-university competitions.
The department also provides consultancy to the University community, which includes the faculty members, staff and employees through various programs and takes care of rehabilitation for the individuals in the physical therapy unit (located in the stadium). The health clubs for the community provide special programs for the members to maintain their health, fitness and general well-being.

The department also makes available its entire infrastructure, including facilities and equipment, to those students, faculty, and staff who seek recreation through various physical activities after regular working hours.
Department of General Studies

Chairman: Dr. Shafi Aldamer

Faculty

<table>
<thead>
<tr>
<th>Albaridi</th>
<th>Bendania</th>
<th>Saeed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldamer</td>
<td>Alowidha</td>
<td>Schefinger</td>
</tr>
<tr>
<td>Almadkhal</td>
<td>Jiang</td>
<td>Sondaal</td>
</tr>
<tr>
<td>Almatrodi</td>
<td>Khogali</td>
<td>Thompson</td>
</tr>
<tr>
<td>Almogren</td>
<td>Magliveras</td>
<td></td>
</tr>
<tr>
<td>Alqurtuby</td>
<td>Moftah</td>
<td></td>
</tr>
</tbody>
</table>
The Department of General Studies (DGS) represents an important part of the overall education of all students at the University. The department seeks to expand and enrich the educational experience of KFUPM engineering, science, and industrial management majors through a social science curriculum.

The Department of General Studies offers courses in the social sciences (sociology, political science, and psychology). The educational goal of the curriculum in General Studies is for students to gain substantive knowledge in these fields of study, and in the process to develop their thinking, communication, and creative abilities. It is important for students to understand human behavior and the social, political, cultural, and historical processes that impact individuals and societies. Such understanding enhances critical thinking, sound judgment, and the more effective performance of occupational roles. The learning objectives of General Studies courses can be divided into three categories:

I. Gaining understanding and substantive knowledge about: principles of human behavior, processes and outcomes of social organization, social institutions, social forces shaping the modern world, international relations, other cultures, regional histories.

II. Development of intellectual abilities:

• Broaden students’ perspectives on themselves, their society, and the world.
• Develop analytical skills and strategic thinking, by analyzing social problems in the real world.
• Develop critical thinking, by examining issues from different social, cultural, and political perspectives.
• Develop communication skills, by encouraging discussion and presentation of ideas (in verbal and written form).
• Encourage creativity in addressing social problems.
• Emphasize that learning is a life-long process and encourage students to continue to be informed, to learn, and to grow.
• Develop research skills and skills in evaluating and presenting information.

III. General Studies curriculum and academic objectives of the University

• Fulfill graduation requirements pertinent to General Education requirements.
• Support other University departments by offering courses that compliment scientific specializations.
• Contribute to the “University competencies and capabilities” requirements for academic accreditation, by the accreditation organizations such as Saudi National Academic Accreditation and Assessment (SNAAA) and Accreditation Board for Engineering and Technology (ABET), and Association to Advance Collegiate Schools of Business (AACSB).

Vision

To become an outstanding multidisciplinary social science department that substantially contributes to KFUPM’s tradition of excellence in high-quality teaching, superior research, and outstanding community services.
Mission

To produce and provide world-class courses that complement KFUPM students’ education, through a diverse and broad social science curriculum that will enhance their knowledge and proficiency.

To produce superior multidisciplinary social science research that best contributes to the development of the Kingdom of Saudi Arabia and of the region at large.

To provide the community with an outstanding service that dynamically assists its advancement.

Strategic Objectives

- Create a dynamic environment for learner success.
- Recruit and retain highly qualified and committed academic faculty.
- Provide KFUPM students with broader social science knowledge.
- Develop essential academic and professional skills that would enhance the education of KFUPM students.
- Produce superb research that is nationally and internationally well recognized.
- Interact with the community with highly quality services.
English Language Department

Chairman: Terry Dale

Faculty

<table>
<thead>
<tr>
<th>Anyan</th>
<th>Gibson</th>
<th>Lawrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berry</td>
<td>Graham</td>
<td>Marquis</td>
</tr>
<tr>
<td>Billam</td>
<td>Hamilton</td>
<td>Nagy</td>
</tr>
<tr>
<td>Blazenko</td>
<td>Hartley</td>
<td>Nelson</td>
</tr>
<tr>
<td>Congreve</td>
<td>Horn</td>
<td>Nicholas</td>
</tr>
<tr>
<td>Dale</td>
<td>Ismail</td>
<td>Pearson</td>
</tr>
<tr>
<td>Daly</td>
<td>Jameson</td>
<td>Pollard</td>
</tr>
<tr>
<td>Donovan</td>
<td>King</td>
<td>Unal</td>
</tr>
</tbody>
</table>
The English Language Department (ELD) consists of a Director and a teaching faculty of 25 lecturers. The department program offers three undergraduate-level English language courses: English 101 (An Introduction to Academic Discourse), English 102 (An Introduction to Report Writing), and English 214 (Academic & Professional Communication).

English 101 is a freshman English course that marks a transition from the Preparatory English Program (PEP) to undergraduate English studies. The primary aim of this course is to introduce students to an academic approach to thinking, reading, speaking, writing and language usage in an integrated, meaningful manner such that they are able to apply the skills learnt to their departmental studies. In addition, the ENGL 101 course aims to further develop the linguistic accuracy and range in English that students have acquired in their Preparatory Year.

The ENGL 102 and 214 courses concentrate on consolidating students’ academic approach to thinking, reading, speaking, writing and language usage, as initiated in ENGL 101. In addition, the ENGL 102 and 214 courses aim to develop and expand on the students’ abilities to synthesize and evaluate information and conduct basic, independent research leading to the writing of a report. Additionally, in English 214, students are taught professional skills such as business correspondence, job interviewing, and multimedia presentations.

In all three courses, students will be expected to take on varying degrees of responsibility for their own learning and to perform a number of independently based tasks and activities outside the classroom. Indeed the focus of all courses will be on students learning rather than teachers teaching.

Mission
The mission of the English Language Department is to provide the University’s undergraduate students with the English language skills necessary to succeed in academic and professional life.

Vision
Our vision is the continuous development of our faculty and teaching curricula in order to equip the University’s graduates with outstanding English language communication skills that will enhance the University’s reputation and help make KFUPM graduates the most sought-after recruits nationally and regionally.

Goal
The main function of the ELD is to provide a language learning environment that is conducive to the teaching and learning of English language communication skills. The emphasis is twofold: *academic*—providing students with the linguistic and communicative skills needed in their university studies, including preparation for co-op and summer training); and, *professional*—providing students with high-level English language skills that will enable them to function at a high level in the workplace in reading, writing and speaking.

Program Objectives:
- To establish agreed standards of performance and proficiency in English at all levels in the University.
To contribute to the development of courses that help to raise all students to acceptable levels of proficiency in English.

To raise the standards of communicative competence for all students completing English courses in KFUPM.

To broaden students’ awareness of the world around them so that they are aware of, and equipped to deal with the challenges facing Saudi Arabia in the 21st century.

Program Outcomes:

Upon completion of the ELD courses, undergraduate students should be able to:

- Apply the critical thinking skills of analysis, synthesis and evaluation to a variety of texts;
- Apply a variety of strategies for planning, writing and revising academic essays and reports
- Write well-organized, unified, coherent essays and reports
- Work collaboratively with peers to plan, develop, and carry out writing projects and provide constructive feedback
- Conduct basic research by accessing appropriate print and electronic sources in the Library and by using advanced search skills on the Internet
- Incorporate source material into essays and reports by summarizing, quoting, and paraphrasing correctly
- Provide documentation for sources with a Works Cited/References page and parenthetical citations using the MLA (English 102) or APA (English 214) formats
- Appreciate the need for formal correctness in their writing through the use of revision and editing skills
- Present information in an engaging and organized manner to an audience
- Utilize basic body language techniques to improve their delivery of presentations (eye contact / stance / gesture)
- Utilize clear, effective visual techniques to exemplify and provide support in their presentations
- Review general reading in order to focus their search for texts on a specific area
- Evaluate a variety of reading texts for their suitability by assessing: relevance to topic and task; readability; elements of bias, and appropriateness of text type
- Understand and avoid plagiarism by:
 - taking appropriate notes from a variety of texts and keeping such notes in an organized manner
 - taking full citation notes on parts of texts to be summarized, paraphrased or quoted in later written tasks
 - Recording full reference information from all texts consulted and utilized using a consistent referencing format
- Use appropriate language and techniques to write a letter, memo or email to a person, institution or business organization for a variety of purposes
- Compose an appropriately designed CV/Résumé in support of a job application
- Perform well in job interviews
COLLEGE OF APPLIED ENGINEERING

Dean: Dr. Omar A. Al-Suwailem

UNDERGRADUATE DEPARTMENTS

APPLIED AEROSPACE ENGINEERING
APPLIED CHEMICAL ENGINEERING
APPLIED CIVIL AND ENVIRONMENTAL ENGINEERING
APPLIED ELECTRICAL ENGINEERING
APPLIED MECHANICAL ENGINEERING
Vision

The vision of the College of Applied Engineering at KFUPM is to provide accessible and responsive applied engineering programs recognized internationally for their high quality and for graduates with valuable education to the local industry.

Mission

The mission of the College of Applied Engineering at KFUPM is to graduate well-educated engineers who will contribute to the advancement of technical knowledge, provide innovative solutions to engineering problems and service to the nation at large.

Philosophy

The programs of the College of Applied Engineering are designed to meet the challenges of the 21st century by emphasizing both theory and practice that enhance students' preparation for professional careers, life-long learning, and responsible participation as members of society. Emphasis is placed on religious, general and sociological education to make today's engineer aware of environmental, sociological, and other "human concerns" in addition to safety, aesthetics, economics and cost of energy in their decision making. Clear and precise communication skills, oral and written, are required of the engineer who delivers judgments, plans and decisions. A sound knowledge of engineering and related disciplines is required so that the engineer can work effectively with other engineers, scientists and technicians, in fulfilling engineering assignments.

College Programs

The demand for engineering graduates who are more trained toward practice has been duly recognized by the College of Applied Engineering by developing an academic program which emphasizes both theory and practice. An elaborate on-job training program is an essential core of this broad-based engineering education. Equipped with the knowledge of mathematics, physical sciences, tools of computational and statistical analysis of data, and on-job training, the student is ready to engage in creative design and construction of real-world engineering projects upon graduation. The College of Applied Engineering also continues to provide flexibility in different programs through a spectrum of electives, which allows the College graduate to exercise a limited choice in tailoring his program to fit his personal career plans.

All programs of the College of Applied Engineering met the Accreditation Criteria of the Board for Engineering and Technology (ABET) in January 2008.

Curricular Requirements

The general Applied Engineering curriculum includes the following features:

Virtually Common Freshman Year: In spite of the fact that students are required to declare their fields of major study at the Freshman level, the various specialty departments have a virtually common Freshman year.
Basic Science Courses: The curriculum of each major in Applied Engineering contains a number of specially designed courses in basic sciences to provide students with a firm background in the physical sciences and mathematics. Courses in general chemistry and physics, a three-semester sequence of mathematics courses, a course on differential equations and on computer programming are offered as a necessary foundation in science and computational skills.

General Education Courses: Several courses are designed within the framework of a curriculum to broaden the students' general education. Among the fields covered are Islamic history and culture, Arabic language and literature, English and economics.

Engineering Breadth: Several courses are required to give the student some breadth of study in science and technology. Courses in application of computers in engineering and statistical analysis of engineering data are clear features of the programs. In addition, under the heading of "Technical Electives", students are permitted to extend their study into further advanced courses in science, mathematics, computer technology, fields of engineering other than their major, or even from their own major.

Engineering Depth: Most of the courses in this category are specified courses designed to give the student the essential subject materials in his major. However, two to four departmental electives are left open to the student so that he can extend his knowledge in his own area of interest.

Engineering Training: A unique feature of the Applied Engineering program is its emphasis upon industrial experience in conjunction with academic training. Each student in the Applied Engineering College must spend one half-year working in industry under a supervised program known as "Cooperative Programs." In this training period, the students gain useful experience which broadens their engineering background.

Graduation Requirements

In order to qualify for graduation, Applied Engineering students must

1. complete all required and elective courses in the selected degree program (133 credit hours minimum) with a cumulative GPA of 2.00 or better;
2. achieve a major GPA of 2.00 or better;
3. complete successfully after the third year a 28-week cooperative program working in industry.
Department of Applied Aerospace Engineering

Chairman: Dr. Ahmed Al-Garni

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Nationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelrahman</td>
<td>Al-Garni</td>
<td>Saeed</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Edi</td>
<td></td>
</tr>
<tr>
<td>Al-Fifi</td>
<td>Iraqi</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Aerospace Engineering is one of the most important strategic fields in the world from at least two aspects: first, its effect on the infrastructure of the country such as fast communication, air transportation, civil aviation, industry, and economy; second, its relevance to defense issues including Air Force and Air Defense.

Due to the importance of this field to the Kingdom of Saudi Arabia (KSA) and the region, an Aerospace Engineering program was established in 1419H (1998G) to serve two branches: Aeronautics Engineering and Astronautics Engineering. This program is the first and only program in KSA and the Arabian Gulf and Peninsula region that offers the two branches. It developed from the Aeronautical Engineering option which was offered in the Mechanical Engineering Department (ME) since 1406H (1986G). The current Applied Aerospace Engineering (AAE) Department was established in 1423H (2002G). Although the Department has only recently been established, it has to its credit the highest number of publications per faculty, among the Arabian countries, in leading aerospace journals (such as AIAA, Canadian, British and Japanese aerospace journals). Moreover, the AAE Department faculty have received many awards such as the King Abdul-Aziz Al-Saud Legion of Honor Medal in the first degree for a Scientific Patent, the Distinguished Engineering Scientist Award for Saudis and Non-Saudis, which is supervised by King Abdul-Aziz City for Science and Technology (KACST), the Distinguished Award in Teaching and Academic Advising by KFUPM, the Distinguished Research Award by KFUPM, and the American Romanian Academy of Arts and Sciences Book Award.

Curriculum

The Applied Aerospace Engineering (AAE) Program is designed to cover all fundamental aspects of Aerospace Engineering. The curriculum includes general education courses in Mathematics, Chemistry, Physics, Engineering, Computer Science, Islamic and Arabic Studies, English, and Physical Education. The program also provides the students with a strong base in the main areas of aerospace engineering: Aerodynamics and Gas Dynamics, Flight Dynamics and Control, Aerospace Structures, Flight Propulsion and other related fields such as Aerospace Systems Maintenance, Helicopter, Avionics, Flight Traffic Control, Flight Safety, Electronic Warfare and Radar, and Astronautics. Moreover, the curriculum is also augmented by a number of elective courses in various branches of Aerospace Engineering. A student has the opportunity to take the appropriate elective courses (two from Aerospace Engineering, two from other engineering fields, and two from General Studies subjects) to broaden his knowledge of aerospace and in areas of his interest. It balances theory with application and provides practical experience through appropriate laboratory sessions. The program includes a capstone design course which provides the student with an opportunity to work with a design team that exposes him to unstructured problem-solving situations. Every Applied Aerospace Engineering student is required to spend 28 weeks in industry to make use of his knowledge and to acquire valuable experience in an industrial environment.

Employment Opportunities

The employment opportunities for aerospace engineers in KSA, the Arabian Gulf and Peninsula region have been very good over the past few years. All indications show that it will be brighter in this age of ever-changing technology. These opportunities exist because of
the rapid pace of industrialization, technological development in the aerospace engineering field, the establishment and expansion of several new airlines in the region, and the procurement of new aerospace-related systems in defence and commercial aviation sectors. Moreover, the Kingdom’s well-established technological infrastructure has set the stage for a very advanced, and expanding, phase of research and development, e.g., satellite development in the Space Institute of KACST (King Abdul-Aziz City of Science and Technology). In view of all these developments, well-qualified aerospace engineers are in great demand.

Vision

To Position KFUPM into a "leading and preminent" institution by developing a full range of competitive aerospace degrees (undergraduate, graduate) and conducting cutting edge research programs of to meet the Kingdom’s and region’s needs for education, manpower, and technical expertise in aerospace engineering and related fields including renewable energy utilization.

Mission

1. To provide high quality education at International level in Aerospace Engineering, well grounded in the fundamental principles of engineering, in order to inspire and prepare the students for leadership positions with the understanding of the strategic value of their work, so they can effectively participate in the development and operation of the aerospace industries and achieve successful careers in other engineering fields to serve the Kingdom and the region.
2. To conduct and promote original scientific research and its application for the advancement of aerospace industry and related industries, disseminate new knowledge through publications, conferences, seminars and workshops.
3. To participate effectively in community services and provide a source of leadership and professional expertise for KFUPM, the Kingdom and the region through continuing education programs, short courses, and consulting services by establishing close partnerships that make a difference with the industry, alumni, government, and other academia in order to develop and support innovation and economic well-being.

Program Educational Objectives

The educational objectives of the Applied Aerospace Engineering Program are three-fold:

Objective #1: Fundamentals and knowledge students will have

To provide students with a strong foundation in basic sciences, mathematics, and engineering fundamentals; in-depth knowledge of Aerodynamics and Gas Dynamics, Flight Dynamics and Control, Flight Propulsion, Flight Structures and Astrodynamics as well as Aviation Sciences and Technologies.

Objective #2: Skills and abilities students will possess

To prepare students for professional careers in Aerospace Engineering or related fields by developing skills and abilities pertinent to:
a) Design and Integration

To educate students in the methodology and tools of design, fundamentals of the open-ended design process including synthesis and integration of information from fundamental and interdisciplinary area necessary to carry out the design of aerospace and related multidisciplinary systems.

b) Experiment

To provide students with the necessary skills to use experimental and data analysis techniques required for aerospace applications.

c) Analysis

To develop skills in methods of analysis and problem solving including mathematical and computational skills and use of contemporary software and information technology tools.

d) Multidisciplinary Teamwork and Leadership

To prepare students with the skills required for successful participation on multi-disciplinary teams and for leadership positions.

e) Communication

To develop skills for oral and written communication including use of the multimedia tools.

f) Pursuit of Advanced Degrees

To expose the students to theory and advances in engineering practice and research as preparation for pursuit of advanced degrees in aerospace engineering and other fields.

Objective #3: Professional ethics and attitudes students will hold

To instill in the students an understanding of the role and importance of life-long learning, professional responsibility, and engineering ethics with awareness of the impact of the engineering on societal and global issues.

Student Outcomes

The AAE program adopts ABET Student Outcomes a-k as its outcomes, in addition to two additional outcomes, hereby named l and m:

a. An ability to apply knowledge of mathematics, science, and fundamental engineering.
b. An ability to design and conduct experiments, as well as to analyze and interpret data.
c. An ability to design a system, component, and process to meet desired needs.
d. An ability to work effectively in multidisciplinary teams.
e. An ability to identify, formulate and solve engineering problems.
f. An understanding of professional and ethical responsibility.

g. An ability to communicate effectively in written, oral, and graphical forms, including the use of high-quality visual aids.

h. The broad education necessary to understand the impact of engineering solutions in a global and societal context.

i. A recognition of the need for, and an ability to engage in life-long learning.

j. A knowledge of contemporary issues.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

m. An ability to integrate aerospace sciences and engineering topics and their application in the design of aerospace systems.
Requirements for the B.S. Degree in Applied Aerospace Engineering

Every student majoring in Applied Aerospace Engineering must complete the following curriculum:

(a) General Education Requirements (61 credit hours)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Courses</td>
<td>CE 201, 203, EE 204</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
<td>14</td>
</tr>
<tr>
<td>Sciences</td>
<td>PHYS 101, 102, CHEM 101</td>
<td>12</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credit Hours: 61

(b) Core Requirements (45 credit hours)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics</td>
<td>ME 201</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>ME 203</td>
<td>3</td>
</tr>
<tr>
<td>ME Drawing & Graphics</td>
<td>ME 210</td>
<td>3</td>
</tr>
<tr>
<td>Material Science</td>
<td>ME 216, 217</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>ME 311</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Aerospace Engineering</td>
<td>AE 220</td>
<td>3</td>
</tr>
<tr>
<td>AE Design</td>
<td>AE 240</td>
<td>2</td>
</tr>
<tr>
<td>AE Systems and Control</td>
<td>AE 313</td>
<td>3</td>
</tr>
<tr>
<td>Gas Dynamics</td>
<td>AE 325</td>
<td>3</td>
</tr>
<tr>
<td>Flight Structures</td>
<td>AE 328</td>
<td>3</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>AE 333</td>
<td>3</td>
</tr>
<tr>
<td>Experimental & Computational Methods for AE</td>
<td>AE 355</td>
<td>1</td>
</tr>
<tr>
<td>Aerospace Engineering Labs</td>
<td>AE 420, 421</td>
<td>2</td>
</tr>
<tr>
<td>Flight Propulsion</td>
<td>AE 422</td>
<td>3</td>
</tr>
<tr>
<td>Flight Dynamics</td>
<td>AE 426</td>
<td>3</td>
</tr>
<tr>
<td>Aerospace System Design</td>
<td>AE 427</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 45

(c) Electives (18 credit hours)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE Electives</td>
<td>Two AE xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Technical Electives (Can be taken from any other department. AE Department approval is required)</td>
<td>Two XXX xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>General Studies (Department approval is required)</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Credit Hours: 18

(d) Cooperative Work (9 credit hours)

Each Coop student must participate in a 28-week program of industrial experience and submit a report.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>AE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

Total Credit Hours: 9

The total number of credit hours required is 133
Applied Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>Total</td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td>17</td>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>AE 220</td>
<td>Intro. to Aerospace Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 240</td>
<td>AE Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CE 203</td>
<td>Structural Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 201</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 210</td>
<td>Mechanical Eng. Drawing & Graphics</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 216</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Third Year (Junior)</td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>AE 331</td>
<td>AE Systems and Control</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>AE 325</td>
<td>Gas Dynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 311</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 328</td>
<td>Flight Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Technical elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 333</td>
<td>Aerodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Technical elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 355</td>
<td>Experimental & Comput. Methods for AE</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 420</td>
<td>Aerospace Eng. Lab I</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fourth Year (Senior)</td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>AE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>AE 421</td>
<td>Aerospace Eng. Lab II</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE 422</td>
<td>Flight Propulsion I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE 426</td>
<td>Flight Dynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE 427</td>
<td>Aerospace System Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE xxx</td>
<td>AE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE xxx</td>
<td>AE Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>Total</td>
<td></td>
<td>17</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

Total credit hours required in Degree Program: 133
Department of Applied Chemical Engineering

Chairman: Dr. Mohammed S. Bashammakh

Faculty

<table>
<thead>
<tr>
<th>Abo-Ghander</th>
<th>Al-Matar</th>
<th>Binous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abussaud</td>
<td>Al-Mubaiyedh</td>
<td>Hussein</td>
</tr>
<tr>
<td>Al-Ali</td>
<td>Al-Mutairi</td>
<td>Mahgoub</td>
</tr>
<tr>
<td>Al-Amer</td>
<td>Al-Saifi</td>
<td>M.Mazhar</td>
</tr>
<tr>
<td>Al-Asiri</td>
<td>Al-Shammari</td>
<td>Razzak</td>
</tr>
<tr>
<td>Al-Baghlí</td>
<td>Al-Yousef</td>
<td>Redhwi</td>
</tr>
<tr>
<td>Al-Harthi</td>
<td>Amin</td>
<td>Shaikh</td>
</tr>
<tr>
<td>Al-Juhani</td>
<td>Atieh</td>
<td>Shamsuzzoha</td>
</tr>
<tr>
<td>Al-Jundi</td>
<td>Ba-Aqil</td>
<td>Shawabkeh</td>
</tr>
<tr>
<td>Al-Khattaf</td>
<td>Ba-Shammakh</td>
<td>Shehzad</td>
</tr>
</tbody>
</table>
Introduction

Chemical Engineering is defined as a profession, which uses the sciences of mathematics, physics and chemistry for the benefit of mankind. It employs chemical and physical principles for the design of processes and the conversion of raw materials into valuable products to improve life for the average person. The chemical conversions involve the preparation of useful products in large quantities using basic thermodynamics and chemical kinetics, which govern reactions. Physical conversions utilize unit operations, fluid dynamics, heat transfer, and mass transfer to separate the reactant products into useful pure chemicals. All these subjects are used in the design of chemical plants and refineries.

The undergraduate applied chemical engineering science curriculum has been systematically revised over the years to reflect the emergence of chemical engineering as a modern discipline and its changing role in society. The modern curriculum includes such diverse topics as process control, use of simulation packages, and chemical plant design, with electives in diverse areas.

Vision

The Department of Chemical Engineering will be the undergraduate chemical engineering department of choice in Saudi Arabia and will be recognized as one of the top research and graduate chemical engineering departments in the region.

Mission

The mission of the Department of Chemical Engineering at King Fahd University of Petroleum & Minerals is to provide an innovative educational program that is rigorous and challenging as well as flexible and supportive. The program is designed to meet the challenges that our graduates are likely to face throughout their professional careers and to provide a high level of scholarship and professional capability, with highly-developed skills in lifetime learning, planning, problem-solving, communication and leadership.

Program Educational Objectives

Within few years after graduation, our graduates will be able to:

- Achieve a successful career in oil, gas, petrochemicals, desalination, energy and other process industries.
- Integrate their academic preparation with chemical engineering practice and technology development.
- Pursue a graduate degree in chemical engineering or other related fields.
- Pursue leadership roles in industry, business, and government agencies.
Student Outcomes

As the outcomes of the undergraduate programs in the Department of Chemical Engineering, the students at the time of graduation are expected to demonstrate:

a. An ability to apply knowledge of mathematics, science, and engineering principles in solving chemical engineering problems.
b. An ability to design and conduct experiments, as well as to analyze and interpret data on experiments relevant to chemical engineering practice.
c. An ability to design a system, component, or a chemical process to meet desired needs within realistic constraints such as economic, environmental and safety.
d. An ability to function and work on multi-disciplinary teams.
e. An ability to identify, formulate, and solve problems important in chemical engineering practice.
f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively.
h. An ability to recognize the impact of engineering solutions in a global, economic, environmental and societal context.
i. A recognition of the need for, and an ability to engage in life-long learning.
j. A recognition of contemporary issues related to the chemical engineering profession.
k. An ability to use the techniques, skills, and modern engineering tools necessary for chemical engineering practice.

Programs Strategy

The strategy of the Department of Chemical Engineering to achieve our objectives is to:

1. Attract high-quality students especially those with top university entrance scores to the chemical engineering program.
2. Continually improve and update the quality of the chemical engineering curriculum.
3. Adopt and apply advances in educational technologies to improve teaching and the learning environment.
4. Develop a strong senior capstone design project course. Annual awards are presented by the Saudi Arabian Section of the American Institution of Chemical Engineers and Saudi Arabia Basic Industries Corporation (SABIC) for the best presented projects.
5. Acquire modern computerized laboratory experiments to update our laboratory program in chemical engineering.
6. Attract and retain high-quality faculty and support staff.
7. Continually improve the program through advice of Industrial Advisory Committee.
8. Promote a strong environmental engineering elective program as per the request of our Industrial Advisory Committee.
9. Promote study in Petroleum Refining and Petrochemicals through our Saudi Aramco funded chair professorship.
10. Promote Study of corrosion in industry through our SABIC-funded chair professorship.
11. Assess the program through surveys of graduating seniors, faculty, alumni, and their employers for improvement.
Requirements for the B.S. Degree in Applied Chemical Engineering

Every student majoring in Applied Chemical Engineering must complete the following curriculum:

(a) General Education Requirements (62 credit hours)

<table>
<thead>
<tr>
<th>Sciences</th>
<th>PHYS 101, 102, CHEM 101, 102</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 202, STAT 319</td>
<td>17</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>ENGL 101, 102, 214, IAS 101, 201, 301</td>
<td>15</td>
</tr>
<tr>
<td>Engineering Skills</td>
<td>ICS 103, CISE 301</td>
<td>6</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 62 credit hours

(b) Advanced Chemical Sciences Requirements (17 credit hours)

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>CHEM 201, 311, 323</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Science</td>
<td>ME 205</td>
<td>3</td>
</tr>
<tr>
<td>Biology</td>
<td>BIOL 233</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 17 credit hours

(c) Core Requirements (36 credit hours)

Introduction to Chemical Eng.	CHE 201	3
Thermodynamics	CHE 202, 303	5
Transport Processes	CHE 204, 300, 304	9
Separation Processes	CHE 306	3
Chemical Engineering Lab	CHE 309, 409	4
Process Dynamics and Control	CHE 401	3
Kinetic and Reactor Design	CHE 402	3
Eng. Economics & Design Principles	CHE 425	3
Integrated Design	CHE 495	3

Total: 36 credit hours

(d) Electives (9 credit hours)

CHE Electives	CHE 4xx	3
Technical Electives	XE xxx	3
General Studies	GS xxx	3

Total: 9 credit hours

(e) Cooperative Work (9 credit hours)

Each student must participate in a 28-week program of industrial experience and submit a formal report.

| Cooperative Work | CHE 351 | 9 |

Total: 9 credit hours

The total number of credit hours required is 133.
Applied Chemical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 133

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>Principles of Chem. Eng. I</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 201</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 300</td>
<td>Transport Phenomena II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 303</td>
<td>Chemical Eng. Thermodynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 304</td>
<td>Transport Phenomena III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CISE 301</td>
<td>Numerical Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>4</td>
<td>18</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CHE 402</td>
<td>Kinetics and Reactor Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 409</td>
<td>Chemical Eng. Laboratory II</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>CHE 425</td>
<td>Process Design and Economics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHE 495</td>
<td>Integrated Design Course</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>CHE 4xx</td>
<td>CHE Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XE</td>
<td>Technical Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 133
Department of Applied Civil and Environmental Engineering

Chairman: Dr. Saleh Al-Dulaijan

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduljauwad</td>
<td>Alghamdi</td>
<td>Azad</td>
</tr>
<tr>
<td>Ahmad</td>
<td>Alhajyaseen</td>
<td>Baig</td>
</tr>
<tr>
<td>Aiban</td>
<td>Al-Malack</td>
<td>Baluch</td>
</tr>
<tr>
<td>Al-Abdulwahhab</td>
<td>Al-Ofi</td>
<td>Bouchama</td>
</tr>
<tr>
<td>Al-Ahmadi</td>
<td>Al-Osta</td>
<td>Bukhari</td>
</tr>
<tr>
<td>Al-Amoudi</td>
<td>Al-Senan</td>
<td>Chowdhury</td>
</tr>
<tr>
<td>Al-Attas</td>
<td>Al-Sghan</td>
<td>Essa</td>
</tr>
<tr>
<td>Al-Dulajian</td>
<td>Al-Shaye</td>
<td>Ibrahim</td>
</tr>
<tr>
<td>Alfarabi</td>
<td>Al-Sughaiyer</td>
<td>Khathlan</td>
</tr>
<tr>
<td>Al-Gadhib</td>
<td>Al-Suwaiyan</td>
<td>Ratrout</td>
</tr>
<tr>
<td>Al-Gahtani, A</td>
<td>Al-Zahrani, M.A</td>
<td>Vohra</td>
</tr>
<tr>
<td>Al-Gahtani, H</td>
<td>Al-Zahrani, M.M</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The Civil and Environmental Engineering major is multidisciplinary in nature. It covers aspects of studies that relate to the essential needs of mankind. It embodies the planning, design, construction, maintenance, and operation of facilities such as buildings, structures, geotechnical, transportation, water, wastewater and waste.

The four-year undergraduate curriculum in Applied Civil and Environmental Engineering provides basic knowledge in sciences, mathematics, and engineering in the first two years. Students are required to choose one of the three options within the program, namely Structural/Materials, Geotechnical/Transportation, or Water/Environmental Engineering. Certain civil engineering core and elective courses are required from students in each option. During the third year, the student is also taught civil engineering applications and design. After the completion of his third year, the student undertakes a cooperative program in industry where the on-the-job training provided leads to an appreciation of the practice of civil engineering. The cooperative program, which spans six months, is an important feature of the program. In addition, courses in humanities, social sciences and economics are integrated into the program to broaden the student’s knowledge.

The Civil and Environmental Engineering Department is equipped with modern laboratories for teaching and research in the areas of geotechnical engineering, civil engineering materials, strength of materials, structural analysis, design and modeling, highway and transportation, surveying and photogrammetry, hydraulics and hydrology, and environmental engineering. Effective use of the modern computer facilities at the University’s Information Technology Center and those available in the department constitutes an essential part of the Applied Civil Engineering undergraduate curriculum.

The program is accredited by the Accreditation Board of Engineering and Technology (ABET) in the USA. The department undertakes a periodic assessment of its program and course learning outcomes for continuous improvement of teaching and learning and to ensure that the educational objectives are met.

Vision

The Vision of the Department of Civil and Environmental Engineering is to establish itself as a leading center of Civil and Environmental Engineering education by supporting academic distinction and seeking excellence in teaching, learning, research and public services in partnership with the University.

Mission

The Mission of the Department of Civil and Environmental Engineering is to maintain a preeminent role in teaching and research by pursuing a policy of rapid adaptation to new knowledge, discoveries, technological advances and emerging economics and to serve the public through the dissemination of knowledge and information. The department seeks to provide an environment of learning within which creative thinking, practical skills and self-development are cultivated and sustained to produce qualified Civil and Environmental Engineers who will challenge the present and enrich the future.
Strategic Goals

The strategic goals set by the department to achieve the vision and mission are:

- To seek continual improvement of the teaching environment and academic programs through an arduous self-evaluation as well as extramural evaluation by peers to provide an education reflective of the essential knowledge, professional competence and skills required of the graduates for successful careers in the Civil Engineering profession.

- To readily adopt and apply advances in educational technologies to improve the teaching and learning environment.

- To make the student community more motivated and responsive to learning and to instill a greater sense of responsibility and accomplishment among the students and to foster personal growth and lifelong learning.

Educational Objectives

The program aims to prepare graduates who, after few years of their career, will have

1. Successfully established themselves as practicing civil engineers

2. Demonstrated in their profession the ability to work as a responsible member of a professional team and take leadership roles

3. Pursued professional career development activities to acquire new knowledge and skills.

Program Outcomes

The eleven program outcomes are:

a. Students shall have an ability to apply knowledge of mathematics, science, and engineering to engineering problems.

b. Students shall have an ability to design and conduct experiments, as well as analyze and interpret data.

c. Students shall have an ability to design a system, component, or process to meet desired needs within constraints.

d. Students shall have an ability to function on multi-disciplinary teams.

e. Students shall have an ability to identify, formulate, and solve engineering problems.

f. Students shall have an understanding of professional and ethical responsibility.

g. Students shall have an ability to communicate effectively.
h. Students shall have the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.

i. Students shall have a recognition of the need for, and an ability to engage in lifelong learning.

j. Students shall have a knowledge of contemporary issues.

k. Students shall have an ability to use techniques, skills, and modern engineering tools including computational tools necessary for engineering practice.
Requirements for the B.S. Degree in Applied Civil and Environmental Engineering

Every student majoring in Applied Civil and Environmental Engineering must complete the following curriculum:

(a) General Education Requirements (66 credit hours)

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Computer Skill</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>Interdisciplinary Basic Courses</td>
<td>ME 201, EE 204</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 260</td>
<td>14</td>
</tr>
<tr>
<td>Sciences</td>
<td>PHYS 101, 102, CHEM 101, 111</td>
<td>14</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Others</td>
<td>ISE 307, MGT 301</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>66</td>
</tr>
</tbody>
</table>

(b) Core Requirements (43 credit hours)

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Graphics</td>
<td>CE 215</td>
<td>3</td>
</tr>
<tr>
<td>Surveying</td>
<td>CE 261</td>
<td>2</td>
</tr>
<tr>
<td>Mechanics and Structures</td>
<td>CE 201, 203, 305</td>
<td>9</td>
</tr>
<tr>
<td>Materials</td>
<td>CE 303</td>
<td>4</td>
</tr>
<tr>
<td>Geotechnical</td>
<td>CE 353</td>
<td>4</td>
</tr>
<tr>
<td>Transportation</td>
<td>CE 341, 343</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Mechanics and Environmental Engineering</td>
<td>CE 230, 330</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to CE Design</td>
<td>CE 312</td>
<td>1</td>
</tr>
<tr>
<td>Numerical and Statistical Methods in CE</td>
<td>CE 318</td>
<td>3</td>
</tr>
<tr>
<td>Construction Methods and Management</td>
<td>CE 421</td>
<td>3</td>
</tr>
<tr>
<td>Applied Design Project</td>
<td>CE 413</td>
<td>3</td>
</tr>
<tr>
<td>CE Seminar</td>
<td>CE 490</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>43</td>
</tr>
</tbody>
</table>

(c) Electives (15 credit hours)

<table>
<thead>
<tr>
<th>Elective</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE Electives</td>
<td>Two CE xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>CE Option Electives (from chosen option)</td>
<td>CE xxx</td>
<td>3</td>
</tr>
<tr>
<td>Additional Science XXX xxx</td>
<td>GEOL 201 or GEOL 202 or BIOL xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)

A minimum of 28-week program to gain experience; submit and present a report.

<table>
<thead>
<tr>
<th>Cooperative Work</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>CE 351</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **133**.
Applied Civil and Environmental Engineering Curriculum

<table>
<thead>
<tr>
<th>Preparatory Year</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year (Freshman)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>CHEM 111</td>
<td>Basics of Environmental Chemistry</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year (Sophomore)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CE 203</td>
<td>Structural Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 261</td>
<td>Surveying I</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>MATH 260</td>
<td>Intro. to Differential Eq. & Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 201</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>XXX</td>
<td>Science Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year (Junior)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 303</td>
<td>Structural Materials</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>CE 312</td>
<td>Intro. to CE Design</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CE 305</td>
<td>Structural Analysis I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CE 341</td>
<td>Transportation Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CE 318</td>
<td>Numerical & Statistical Methods in CE</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>CE 343</td>
<td>Transportation Eng. Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>CE 353</td>
<td>Geotechnical Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CE 330</td>
<td>Environmental Eng. Principles</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ISE 307</td>
<td>Eng. Economics Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CE xxx</td>
<td>CE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td>16</td>
<td>6</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Session</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 350</td>
<td>Begin Cooperative Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Department of Applied Electrical Engineering

Chairman: Dr. Ali Al-Shaikh

Faculty

<table>
<thead>
<tr>
<th>Abdul-Jauwad</th>
<th>Al-Ouali</th>
<th>Kousa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abido</td>
<td>Al-Qahtani, K</td>
<td>Landolsi</td>
</tr>
<tr>
<td>Abu-Al-Saud</td>
<td>Al-Qahtani, M</td>
<td>Mahnashi</td>
</tr>
<tr>
<td>Abuelmaatti</td>
<td>Alsaihi</td>
<td>Masoud</td>
</tr>
<tr>
<td>Al-Absi</td>
<td>Al-Shahrani</td>
<td>Masoudi</td>
</tr>
<tr>
<td>Alahmadi</td>
<td>Al-Shaikh</td>
<td>Mesbah</td>
</tr>
<tr>
<td>Al-Ahmari</td>
<td>Al-Sunaidi</td>
<td>Mohandes</td>
</tr>
<tr>
<td>Al-Akhdar</td>
<td>Al-Suwailem</td>
<td>Mousa</td>
</tr>
<tr>
<td>Alawami</td>
<td>Al-Zaher</td>
<td>Muqabel</td>
</tr>
<tr>
<td>Al-Baiyat</td>
<td>Ashraf</td>
<td>Naveed</td>
</tr>
<tr>
<td>Al-Battal</td>
<td>Bakhashwain</td>
<td>Nuruzzaman</td>
</tr>
<tr>
<td>Al-Dharrab</td>
<td>Balghonaaim</td>
<td>Qureshi</td>
</tr>
<tr>
<td>Aldohan</td>
<td>Deriche</td>
<td>Ragheb</td>
</tr>
<tr>
<td>Al-Duwaish</td>
<td>El-Amin</td>
<td>Shafi</td>
</tr>
<tr>
<td>Alghadhban</td>
<td>Habiballah</td>
<td>Sharawi</td>
</tr>
<tr>
<td>Alghamdi</td>
<td>Hammi</td>
<td>Sheikh</td>
</tr>
<tr>
<td>Al-Hamouz</td>
<td>Hassan</td>
<td>Sorour</td>
</tr>
<tr>
<td>Al-Jamid</td>
<td>Hussein</td>
<td>Tasadduq</td>
</tr>
<tr>
<td>Al-Maghrabi</td>
<td>Ibrir</td>
<td>Zerguine</td>
</tr>
<tr>
<td>Al-Muhaini</td>
<td>Johar</td>
<td>Zidouri</td>
</tr>
<tr>
<td>Al-Naffouri</td>
<td>Kassas</td>
<td>Zummo</td>
</tr>
</tbody>
</table>
Introduction

The contribution of electrical engineering to modern society is a fact underlying a large number of products and services. Most modern appliances are electrically powered. Moreover, services such as global communications and large computing facilities are electronically-based. At present, equipment used in medical diagnosis and treatment relying on electrical engineering principles is finding widening applications. In addition to these examples, electrical engineering concepts deriving from such disciplines as control theory and information theory have had applications in economics, management, physiology, energy, and biomedicine.

In training students, the Applied Electrical Engineering program emphasizes three aspects. First, subjects in science such as mathematics, physics, and chemistry enable the student to develop the necessary analytical ability and prepare him with a sound scientific foundation. Second, subjects related to humanities and general studies ensure excellent skills and a broader outlook. Third, subjects that cover the main disciplines in electrical engineering (Energy, Control, Communications, Signal Processing, Electromagnetics, Electronics, and Digital Systems) ensure a broad knowledge of electrical engineering. Students can acquire greater depth and specialization through the choice of EE electives. These three aspects are supported with laboratories, cooperative training and a senior project. Laboratory experience exposes the students to the instrumentation, design, and construction of electrical and electronic devices and circuits. Team work and design aspects are further emphasized through the senior project. A prominent characteristic of applied electrical engineering is the requirement that students spend 28 weeks in industry, a requirement that is satisfied through the cooperative work program.

The curriculum and the courses in our program undergo continuous evaluation and update to guarantee that our graduates are at the forefront of knowledge in the field. New courses related to wireless communications, renewable energy, etc., have been introduced to match the rapid growth.

After completing the undergraduate program in applied electrical engineering, the student is qualified to take up responsible employment. Numerous work opportunities for applied electrical engineers exist in the Kingdom of Saudi Arabia and overseas, where graduates may work in the areas of communications, including telephony, internet services, radio and television, much of which incorporates the expanding field of microwaves. The areas of power engineering, electrical installation, broadcasting, and education also provide good career opportunities. A large number of graduates are also required by industry for work in information processing, computers, and systems analysis. Other opportunities exist in industrial electronics, instrumentation, manufacturing technology, and training. Some of the graduates go on to pursue their graduate studies towards the MSc or PhD either at KFUPM or at top universities around the world.

Vision

To become the best Electrical Engineering school in the region.

Mission

To provide quality education, research, and service to its constituents.
Program Educational Objectives:

The Electrical Engineering Department has defined a set of Program Educational Objectives that translates its mission into defined tasks. The objectives are measures of the graduates’ achievements 3 to 5 years after completing the program. The Applied Electrical Engineering (AEE) program provides broad foundations to achieve the following objectives:

1. Graduates will have a successful career in Electrical Engineering.
2. Graduates will advance to the position of leadership in their profession.
3. Graduates may pursue their professional development through self-learning and advanced degrees.

Student Outcomes:

Student Outcomes are statements that describe what students are expected to know and be able to do by the time of graduation. They are related to skills, knowledge and behavior that students will acquire through the program. The Student Outcomes support the Program Educational Objectives.

The Student Outcomes of the Applied Electrical Engineering (AEE) program are as follows:

a. Apply knowledge of mathematics, science, and engineering
b. Design and conduct experiments, as well as to analyze and interpret data
c. Design a system, component, or process to meet desired needs
d. Function on multi-disciplinary teams
e. Identify, formulate, and solve engineering problems
f. Understand professional and ethical responsibility
g. Communicate effectively
h. Acquire the broad education necessary to understand the impact of engineering solutions in a global and societal context
i. Recognize the need for, and be able to engage in life-long learning
j. Acquire knowledge of contemporary issues
k. Use the techniques, skills, and modern engineering tools necessary for engineering practice
l. Apply the probabilistic methods and statistics to electrical engineering problems
m. Use effectively hands on experience for handling electrical engineering problems
Requirement for the B.S. Degree in Applied Electrical Engineering

Every student majoring in Applied Electrical Engineering must complete the following curriculum:

(a) General Education Requirements (58 credit hours)

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 302</td>
<td>17</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Engineering Economic Analysis</td>
<td>ISE 307</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 58

(b) Core Requirements (51 credit hours)

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Logic Circuit Design</td>
<td>EE 200</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Circuits I, II</td>
<td>EE 202, 213</td>
<td>6</td>
</tr>
<tr>
<td>Intro. to Electrical Eng.</td>
<td>EE 206</td>
<td>2</td>
</tr>
<tr>
<td>Electronics I, II</td>
<td>EE 203, 303</td>
<td>8</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>EE 207</td>
<td>3</td>
</tr>
<tr>
<td>Electric Energy Eng.</td>
<td>EE 360</td>
<td>4</td>
</tr>
<tr>
<td>Control Eng. I</td>
<td>EE 380</td>
<td>4</td>
</tr>
<tr>
<td>Electromagnetics</td>
<td>EE 340</td>
<td>4</td>
</tr>
<tr>
<td>Communications Eng. I</td>
<td>EE 370</td>
<td>4</td>
</tr>
<tr>
<td>Digital Systems Eng.</td>
<td>EE 390</td>
<td>4</td>
</tr>
<tr>
<td>Probabilistic Methods in Electrical Eng.</td>
<td>EE 315</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of EE Design</td>
<td>EE 311</td>
<td>2</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>EE 411</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 51

(c) Electives (16 credit hours)

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Electives</td>
<td>Two EE 4xx courses</td>
<td>7</td>
</tr>
<tr>
<td>Science or Eng. Elective</td>
<td>XXX 2xx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

Total 16

(d) Cooperative Work (9 credit hours)

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>EE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

Total 9

The total number of credit hours required is 134
Applied Electrical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 200</td>
<td>Digital Logic Circuit Design</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 203</td>
<td>Electronics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 213</td>
<td>Electrical Circuits II</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EE 206</td>
<td>Intro. to Electrical Eng.</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>EE 207</td>
<td>Signals and Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX 2xx</td>
<td>Science or Eng. Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 303</td>
<td>Electronics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 340</td>
<td>Electromagnetics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 360</td>
<td>Electric Energy Eng.</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 370</td>
<td>Communications Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 380</td>
<td>Control Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 390</td>
<td>Digital Systems Eng.</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ISE 307</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 315</td>
<td>Probabilistic Methods in Electrical Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 302</td>
<td>Eng. Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 311</td>
<td>Fundamentals of EE Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>19</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>EE 4xx</td>
<td>EE Elective I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>EE 4xx</td>
<td>EE Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>EE 411</td>
<td>Senior Design Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Total credit hours required in Preparatory Program**: 31
| **Total credit hours required in Degree Program**: 134
Department of Applied Mechanical Engineering

Chairman: Dr. Zuhair M. Gasem

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulazeem</td>
<td>Badour</td>
<td>Merah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdulkhaliq</td>
<td>Bahaidarah</td>
<td>Mezghani</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abualhamayel</td>
<td>Baig</td>
<td>Mohammed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abu-Dheir</td>
<td>Bashmal</td>
<td>Mokheimer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed</td>
<td>Bazoune</td>
<td>Muhammad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akhtar</td>
<td>Binmansoor</td>
<td>Nakla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Aqeeli</td>
<td>El-Shaarawi</td>
<td>Nouari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Athel</td>
<td>Elsharqawy</td>
<td>Ouakad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albinmousa</td>
<td>Furquan</td>
<td>Pashah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Dini</td>
<td>Gandhidasan</td>
<td>Patel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Farayedhi</td>
<td>Gasem</td>
<td>Raza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Hadhrami</td>
<td>Habib</td>
<td>Sahin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Kaabi</td>
<td>Hassan, F</td>
<td>Said</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Marbati</td>
<td>Hassan, M</td>
<td>Shoukat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Nassar</td>
<td>Hawwa</td>
<td>Sheikh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Qahtani, H</td>
<td>Jabbar</td>
<td>Shuaib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Qahtani, M</td>
<td>Khalifa</td>
<td>Shuja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Qutub</td>
<td>Khan, S</td>
<td>Sorour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsaeed</td>
<td>Khan, Z</td>
<td>Sunar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Sarkhi</td>
<td>Khulief</td>
<td>Toor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsulaiman</td>
<td>Laoui</td>
<td>Yaqub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anis</td>
<td>Mahmood</td>
<td>Yilbas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antar</td>
<td>Mansoor</td>
<td>Younas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arif</td>
<td>Mansour</td>
<td>Zubair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badr</td>
<td>Mekid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Mechanical engineering is one of the oldest, broadest, and perhaps the most versatile discipline among all engineering disciplines. Mechanical engineers use the principles of energy, mechanics, and materials to design and manufacture machines and devices of all types, and create the systems and processes that drive technology and virtually every industry. The key characteristics of the mechanical engineering profession are its breadth, flexibility, and individuality. Mechanical Engineering derives its breadth from the need to design and manufacture everything from small individual components and devices to large engineering structures and systems. Its flexibility emanates from its scope involving materials, solid and fluid mechanics, thermodynamics, heat transfer, control, instrumentation, design, and manufacturing. Its individuality lies in the ever-emerging specialized mechanical engineering fields such as biomechanics, robotics, mechatronics, nanomechanics, microfluidics, micropower generation, MEMS and NEMS.

Mechanical engineering encompasses an understanding of core concepts including mechanics, kinematics, thermodynamics, heat transfer, materials science, structural and manufacturing analyses. Mechanical engineers use these core concepts to conceive, design, develop, manufacture, and maintain devices and tools, equipment and machinery, products and plants that run the engineering industry. Mechanical engineers also use these core principles to ensure that the products are manufactured economically, and function safely, efficiently and reliably. Mechanical engineers work in the automotive, aerospace, chemical, computer, power, petrochemical, marine and machine tool manufacturing industries, to name a few. Thus, it may be safely stated that every product or service in the modern world has probably been touched in some way by a mechanical engineer.

With the above in mind, the Applied Mechanical Engineering (AME) curriculum at KFUPM has been designed to provide a broad yet rigorous understanding of core mechanical engineering subjects in thermal sciences, mechanical design, materials science and manufacturing processes in the first three years of study. During these years, the AME curriculum aims at developing critical thinking and problem-solving skills using the principles of science and mathematics. In the second semester of the junior year each AME student is required to go on a 28-week program of co-op industry experience. After completion of his co-op training each student is required to submit a formal co-op report and make an oral presentation of his co-op experience. In the senior year the students have sufficient flexibility to select ME Electives from a broad spectrum of courses in the areas of thermo fluids, design and dynamics, or materials and manufacturing. A senior Capstone Design project spread over two semesters provides each student with the opportunity to integrate his knowledge of the previous three years, exercise his creativity, enhance his individuality, and develop entrepreneurship skills. The AME program is evaluated by ABET every five years and has received its latest accreditation in 2010.

The employment opportunities for AME graduates from KFUPM have been very good and are expected to become even better with the rapid pace of industrialization in the Kingdom of Saudi Arabia. Large-scale expansions in the petrochemical, chemical process, and power-generation industries will require a growing influx of AME graduates. Also, many ambitious programs in clean water, clean energy, nanotechnology, and nuclear power generation will result in a substantial increase in the demand for AME graduates in both the short and long term.
Mission

The Mechanical Engineering Department is committed to providing the highest quality education in mechanical engineering, conducting world-class basic and applied research, addressing the evolving needs of industry and society, and supporting the development of more competitive and new industry in the Kingdom of Saudi Arabia.

Vision

The Mechanical Engineering Department at KFUPM will seek distinction as a leader in providing world-class mechanical engineering education to the Kingdom of Saudi Arabia and the Gulf region. The graduates of the Department will be at the forefront of establishing, advancing, and expanding an indigenous knowledge base, which can be solidly relied upon for accepting future challenges, providing proper directions for industrial growth, and furnishing reliable solutions to engineering problems.

Goals

1. Be preeminent in developing and providing the highest quality undergraduate learning environment in Mechanical Engineering education.
2. Be a world reputed Mechanical Engineering Department in graduate education, and basic and applied research.
3. Be preeminent on international level for academic, basic, and applied research.
4. Be a preeminent and leading institution for supporting the technological advancement and economic growth of the local, national, and Gulf area industry.
5. Be a leading university in human-resource development and effective and efficient infrastructure utilization.
Requirements for the B.S. Degree in Applied Mechanical Engineering

Every student majoring in Applied Mechanical Engineering must complete the following curriculum:

(a) General Education Requirements (67 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming in C</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Engineering Courses</td>
<td>CE 201, 203, EE 204, 306</td>
<td>12</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 301</td>
<td>17</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
</tbody>
</table>

(b) Core Requirements (49 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering Drawing & Graphics</td>
<td>ME 210</td>
<td>3</td>
</tr>
<tr>
<td>Intro. to Mechanical Engineering Design</td>
<td>ME 218</td>
<td>2</td>
</tr>
<tr>
<td>Dynamics, Control, Mechanics of Machines</td>
<td>ME 201, 309, 413</td>
<td>9</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>ME 203, 204</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>ME 216</td>
<td>3</td>
</tr>
<tr>
<td>Materials Lab</td>
<td>ME 217</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>ME 322</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Lab</td>
<td>ME 323</td>
<td>1</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>ME 311</td>
<td>3</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>ME 315</td>
<td>3</td>
</tr>
<tr>
<td>Machine Design</td>
<td>ME 307, 308</td>
<td>7</td>
</tr>
<tr>
<td>ThermoFluids Lab</td>
<td>ME 316</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing and Design</td>
<td>ME 406</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Manufacturing Lab</td>
<td>ME 407</td>
<td>1</td>
</tr>
<tr>
<td>Design Project</td>
<td>ME 414, 416</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) Electives (9 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering Elective</td>
<td>ME 4xx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>ME 351</td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **134**
Applied Mechanical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program: 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 218</td>
<td>Intro. to Mechanical Eng. Design</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 201</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 210</td>
<td>Mechanical Eng. Drawing & Graphics</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 204</td>
<td>Thermodynamics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 216</td>
<td>Materials Science and Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 217</td>
<td>Materials Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>CE 203</td>
<td>Structural Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 322</td>
<td>Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 309</td>
<td>Mechanics of Machines</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 323</td>
<td>Manufacturing Lab</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 308</td>
<td>Machine Design II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ME 315</td>
<td>Heat Transfer</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 307</td>
<td>Machine Design I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 316</td>
<td>Thermofluids Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ME 311</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 301</td>
<td>Methods of Applied Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 306</td>
<td>Electromechanical Devices</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ME 414</td>
<td>Design Project I</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>ME 416</td>
<td>Design Project II</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ME 406</td>
<td>Manufacturing and Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 407</td>
<td>Advanced Manufacturing Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ME 413</td>
<td>Systems Dynamics and Control</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 4xx</td>
<td>ME Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program: 134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COLLEGE OF ENGINEERING SCIENCES

Dean: Dr. Omar A. Al-Suwailem

UNDERGRADUATE DEPARTMENTS

AEROSPACE ENGINEERING
CHEMICAL ENGINEERING
CIVIL AND ENVIRONMENTAL ENGINEERING
ELECTRICAL ENGINEERING
MECHANICAL ENGINEERING
PETROLEUM ENGINEERING
Vision
To be a leading college in engineering education, research, and profession.

Mission

- To attract and graduate talented, broadly educated, and globally competitive engineers empowered to be future leaders
- To conduct top-quality research, in engineering sciences & technology, of high relevance to the nation and the region
- To engage in outreach programs which serve the needs of the local industry and the community

Philosophy

The programs of the College of Engineering Sciences are designed to meet the challenges of the 21st century through the enhancement of students' preparation for professional careers, life-long learning, and responsible participation as members of society. Emphasis is placed on religious, general, and sociological education to make today's engineer aware of environmental, sociological, and other "human concerns" in addition to safety, aesthetics, economics and the cost of energy in their decision-making. Clear and precise communication skills, oral and written, are required of the engineer who delivers judgments, plans and decisions. A sound knowledge of engineering and related disciplines is required so that the engineer can work effectively with other engineers, scientists and technicians, in fulfilling engineering assignments.

College Programs

The undergraduate programs of the College of Engineering Sciences provide students with a range of educational opportunities by which they may achieve competence in major branches of engineering. Equipped with the knowledge of mathematics, physical sciences, computational techniques, and statistical analysis of data, the engineer can engage in creative design and construction, synthesis of systems, and in research and development. Thus the engineer serves as a bridge between meeting human needs and the storehouse of theoretical knowledge. The College of Engineering Sciences continues to provide flexibility in different programs through a spectrum of electives, which allows the College graduate to exercise a limited choice in tailoring his program to fit his personal goals, whether for immediate employment or for graduate work.

All programs of the College of Engineering Sciences met the Accreditation Criteria of the Board for Engineering and Technology (ABET) in January 2008.

Curricular Requirements

The general engineering sciences curriculum includes the following features:

Virtually Common Freshman Year: In spite of the fact that students are required to declare their fields of major study at the Freshman level, the various specialty departments have a virtually common Freshman year.
Basic Sciences: The curriculum of each major in Engineering Sciences contains a number of specially designed courses in basic sciences to provide students with a firm background in the physical sciences and mathematics. Courses in general chemistry and physics, a three-semester sequence of mathematics courses, a course on differential equations and on computer programming are offered as a necessary foundation in science and computational skills.

General Education Courses: Several courses are designed within the framework of a curriculum to broaden the students' general education. Among the fields covered are Islamic history and culture, Arabic language and literature, English and economics.

Engineering Breadth: Several courses are required to give the student some breadth of study in science and technology. Courses in the application of computers in engineering and statistical analysis of engineering data are clear features of the programs. In addition, under the heading of "Technical Electives", students are permitted to extend their study into more advanced courses in science, mathematics, computer technology, the fields of engineering other than their major, or even from their own major.

Engineering Depth: About one full year of study is devoted to the student's major field of engineering. Most of the courses in this category are specified courses designed to give the student the essential subject materials in his major. However, two to four departmental electives are left open to the student so that he can extend his knowledge in his own area of interest. Finally, every student takes a course leading to an integrated design project where the student uses his engineering and design skills in planning and designing a real world engineering project. The design should take into consideration appropriate constraints such as economic factors, safety, reliability, ethics, and environmental and social impacts.

Graduation Requirements

In order to qualify for graduation, Engineering students must

1. complete all required and elective courses in the selected degree program (133 credit hours minimum) with a cumulative GPA of 2.00 or better;
2. achieve a major GPA of 2.00 or better;
3. complete successfully after the third year an 8-week program working in industry.
Department of Aerospace Engineering

Chairman: Dr. Ahmed Al-Garni

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Nationality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelrahman</td>
<td>Al-Garni</td>
<td>Saeed</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Edi</td>
<td></td>
</tr>
<tr>
<td>Al-Fifi</td>
<td>Iraqi</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Aerospace Engineering is one of the most important strategic fields in the world from at least two aspects: first, its effect on the infrastructure of the country such as fast communication, air transportation, civil aviation, industry, and economy; second, its relevance to defense issues including Air Force and Air Defense.

Due to the importance of this field to the Kingdom of Saudi Arabia (KSA) and the region, an aerospace engineering program was established in 1419H (1998G) to serve two branches: Aeronautics Engineering and Astronautics Engineering. This program is the first and only program in KSA and the Arabian Gulf and Peninsula region that offers the two branches. It developed from the Aeronautical Engineering option which was offered in the Mechanical Engineering Department (ME) from 1406H (1986G). The current Aerospace Engineering Department was established in 1423H (2002G). Although, the Department has only recently been established, it has to its credit the highest number of publications per faculty, among the Arabian countries, in leading aerospace journals (such as AIAA, Canadian, British and Japanese aerospace journals). Moreover, the AE Department faculty have received many awards, such as the King Abdul-Aziz Al-Saud Legion of Honor Medal in the first degree for a Scientific Patent, the Distinguished Engineering Scientist Award for Saudis and Non-Saudis, which is supervised by King Abdul-Aziz City for Science and Technology (KACST), the Distinguished Award in Teaching and Academic Advising by KFUPM, the Distinguished Research Award by KFUPM, and the American Romanian Academy of Arts and Sciences Book Award.

Curriculum

The Aerospace Engineering (AE) Program is designed to cover all fundamental aspects of aerospace engineering. The curriculum includes general education courses in Mathematics, Chemistry, Physics, Engineering, Computer Science, Islamic and Arabic Studies, English, and Physical Education. The program also provides the students with a strong base in the main areas of Aerospace Engineering: Aerodynamics and Gas Dynamics, Flight Dynamics and Control, Aerospace Structures, Flight Propulsion and other related fields such as Aerospace Systems Maintenance, Helicopter, Avionics, Flight Traffic Control, Flight Safety, Electronic Warfare and Radar, and Astronautics. Moreover, the curriculum is also augmented by a number of elective courses in various branches of Aerospace Engineering. A student has the opportunity to take the appropriate elective courses (two from Aerospace Engineering, two from other engineering fields, and two from General Studies subjects) to broaden his knowledge of aerospace and in areas of his interest. It balances theory with application and provides practical experience through appropriate laboratory sessions. The program includes a senior project, a capstone design course, which provides the student with an opportunity to work with a design team that exposes him to unstructured problem-solving situations. Every Aerospace Engineering student is required to spend 8 weeks in summer training to make use of his knowledge and to acquire valuable experience in an industrial environment.

Employment Opportunities

The employment opportunities for aerospace engineers in KSA, the Arabian Gulf and Peninsula region have been very good and will be brighter in this age of ever-changing technology. These opportunities exist because of the rapid pace of industrialization, technological development in the aerospace engineering field, the establishment of aviation departments in private organizations, and the procurement of new aerospace-related systems
in defense and commercial aviation sectors. Moreover, the Kingdom’s well-established technological infrastructure has set the stage for the subsequent, very advanced, and expanding, phase of research and development, e.g., satellite development in the Space Institute of KACST (King Abdul-Aziz City of Science and Technology). In view of all these developments, well-qualified aerospace engineers are in great demand.

Vision

To Position KFUPM into a "leading and preminent" institution by developing a full range of competitive aerospace degrees (undergraduate, graduate) and conducting cutting edge research programs of to meet the Kingdom’s and region’s needs for education, manpower, and technical expertise in aerospace engineering and related fields including renewable energy utilization.

Mission

1. To provide high quality education at International level in Aerospace Engineering, well grounded in the fundamental principles of engineering, in order to inspire and prepare the students for leadership positions with the understanding of the strategic value of their work, so they can effectively participate in the development and operation of the aerospace industries and achieve successful careers in other engineering fields to serve the Kingdom and the region.
2. To conduct and promote original scientific research and its application for the advancement of aerospace industry and related industries, disseminate new knowledge through publications, conferences, seminars and workshops.
3. To participate effectively in community services and provide a source of leadership and professional expertise for KFUPM, the Kingdom and the region through continuing education programs, short courses, and consulting services by establishing close partnerships that make a difference with the industry, alumni, government, and other academia in order to develop and support innovation and economic well-being.

Program Educational Objectives

The educational objectives of the Aerospace Engineering Program are three-fold:

Objective #1: Fundamentals and knowledge students will have

To provide students with a strong foundation in basic sciences, mathematics, and engineering fundamentals; in-depth knowledge of Aerodynamics and Gas Dynamics, Flight Dynamics and Control, Flight Propulsion, Flight Structures and Astrodynamics as well as Aviation Sciences and Technologies.

Objective #2: Skills and abilities students will possess

To prepare students for professional careers in Aerospace Engineering or related fields by developing skills and abilities pertinent to:

a) Design and Integration
To educate students in the methodology and tools of design, fundamentals of the open-ended design process including synthesis and integration of information from fundamental and interdisciplinary area necessary to carry out the design of aerospace and related multidisciplinary systems.

b) Experiment

To provide students with the necessary skills to use experimental and data analysis techniques required for aerospace applications.

c) Analysis

To develop skills in methods of analysis and problem solving including mathematical and computational skills and use of contemporary software and information technology tools.

d) Multidisciplinary Teamwork and Leadership

To prepare students with the skills required for successful participation on multi-disciplinary teams and for leadership positions.

e) Communication

To develop skills for oral and written communication including use of the multimedia tools.

f) Pursuit of Advanced Degrees

To expose the students to theory and advances in engineering practice and research as preparation for pursuit of advanced degrees in aerospace engineering and other fields.

Objective #3: Professional ethics and attitudes students will hold

To instill in the students an understanding of the role and importance of life-long learning, professional responsibility, and engineering ethics with awareness of the impact of the engineering on societal and global issues.

Student Outcomes

The AE program adopts ABET Student Outcomes a-k as its outcomes, in addition to two additional outcomes, hereby named l and m:

a. An ability to apply knowledge of mathematics, science, and fundamental engineering.
b. An ability to design and conduct experiments, as well as to analyze and interpret data.
c. An ability to design a system, component, and process to meet desired needs.
d. An ability to work effectively in multidisciplinary teams.
e. An ability to identify, formulate and solve engineering problems.
f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively in written, oral, and graphical forms, including the use of high-quality visual aids.
h. The broad education necessary to understand the impact of engineering solutions in a global and societal context.
i. A recognition of the need for, and an ability to engage in life-long learning.
j. A knowledge of contemporary issues.
k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
m. An ability to integrate aerospace sciences and engineering topics and their application in the design of aerospace systems.
Requirements for the B.S. Degree in Aerospace Engineering

Every student majoring in Aerospace Engineering must complete the following curriculum:

<table>
<thead>
<tr>
<th>(a) General Education Requirements (67 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
</tr>
<tr>
<td>Engineering Courses</td>
<td>CE 201, 203, EE 204, CISE 301</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 301</td>
</tr>
<tr>
<td>Sciences</td>
<td>PHYS 101, 102, CHEM 101</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Core Requirements (48 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics</td>
<td>ME 201</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>ME 203</td>
</tr>
<tr>
<td>ME Drawing & Graphics</td>
<td>ME 210</td>
</tr>
<tr>
<td>Material Science</td>
<td>ME 216, 217</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>ME 311</td>
</tr>
<tr>
<td>Introduction to Aerospace Engineering</td>
<td>AE 220</td>
</tr>
<tr>
<td>AE Design</td>
<td>AE 240</td>
</tr>
<tr>
<td>AE Systems and Control</td>
<td>AE 313</td>
</tr>
<tr>
<td>Gas Dynamics</td>
<td>AE 325</td>
</tr>
<tr>
<td>Flight Structures</td>
<td>AE 328</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>AE 333</td>
</tr>
<tr>
<td>Experimental & Computational Methods for AE</td>
<td>AE 355</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>AE 411, 412</td>
</tr>
<tr>
<td>Aerospace Engineering Labs</td>
<td>AE 420, 421</td>
</tr>
<tr>
<td>Flight Propulsion</td>
<td>AE 422</td>
</tr>
<tr>
<td>Flight Dynamics</td>
<td>AE 426</td>
</tr>
<tr>
<td>Aerospace System Design</td>
<td>AE 427</td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Electives (18 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE Electives</td>
<td>Two AE xxx Courses</td>
</tr>
<tr>
<td>Technical Electives (Can be taken from any other department. AE Department approval is required)</td>
<td>Two XE xxx Courses</td>
</tr>
<tr>
<td>General Studies (Department approval is required)</td>
<td>Two GS xxx Courses</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) Summer Training (0 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>AE 399</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **133**
Aerospace Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td>20</td>
<td>10</td>
<td>16</td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total:</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 220</td>
<td>Intro. to Aerospace Eng.</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>AE 240</td>
<td>AE Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CE 203</td>
<td>Structural Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 201</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 210</td>
<td>Mechanical Eng. Drawing & Graphics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 216</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>17</td>
<td>3</td>
<td>18</td>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>AE 313</td>
<td>AE Systems and Control</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>AE 325</td>
<td>Gas Dynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MAT H 301</td>
<td>Methods of Applied Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 328</td>
<td>Flight Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 311</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 333</td>
<td>Aerodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CISE 301</td>
<td>Numerical Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 355</td>
<td>Experimental & Comput. Methods for AE</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total:</td>
<td>16</td>
<td>3</td>
<td>17</td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE 411</td>
<td>Senior Design Project I</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>AE 412</td>
<td>Senior Design Project II</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE 420</td>
<td>Aerospace Eng. Lab I</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>AE 421</td>
<td>Aerospace Eng. Lab II</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>AE 426</td>
<td>Flight Dynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 422</td>
<td>Flight Propulsion I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>AE xxx</td>
<td>AE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>AE 427</td>
<td>Aerospace System Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>AE xxx</td>
<td>AE Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XE xxx</td>
<td>Technical Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XE xxx</td>
<td>Technical Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Total credit hours required in Degree Program:</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>
Department of Chemical Engineering

Chairman: Dr. Mohammed S. Bashammakh

Faculty

<table>
<thead>
<tr>
<th>Abo-Ghander</th>
<th>Al-Matar</th>
<th>Binous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abussaud</td>
<td>Al-Mubaiyedh</td>
<td>Hussein</td>
</tr>
<tr>
<td>Al-Ali</td>
<td>Al-Mutairi</td>
<td>Mahgoub</td>
</tr>
<tr>
<td>Al-Amer</td>
<td>Al-Saifi</td>
<td>M.Mazhar</td>
</tr>
<tr>
<td>Al-Asiri</td>
<td>Al-Shammari</td>
<td>Razzak</td>
</tr>
<tr>
<td>Al-Baghli</td>
<td>Al-Yousef</td>
<td>Redhwi</td>
</tr>
<tr>
<td>Al-Harthi</td>
<td>Amin</td>
<td>Shaikh</td>
</tr>
<tr>
<td>Al-Juhani</td>
<td>Atieh</td>
<td>Shamsuzzoha</td>
</tr>
<tr>
<td>Al-Jundi</td>
<td>Ba-Aqil</td>
<td>Shawabkeh</td>
</tr>
<tr>
<td>Al-Khattaf</td>
<td>Ba-Shammakh</td>
<td>Shehzad</td>
</tr>
</tbody>
</table>
Introduction

Chemical Engineering is defined as a profession which uses the sciences of mathematics, physics and chemistry for the benefit of mankind. It employs chemical and physical principles for the design of processes and the conversion of raw materials into valuable products to improve life for the average person. The chemical conversions involve the preparation of useful products in large quantities using basic thermodynamics and chemical kinetics, which govern reactions. Physical conversions utilize unit operations, fluid dynamics, heat transfer, and mass transfer to separate the reactant products into useful pure chemicals. All these subjects are used in the design of chemical plants and refineries.

The undergraduate chemical engineering science curriculum has been systematically revised over the years to reflect the emergence of chemical engineering as a modern discipline and its changing role in society. The modern curriculum includes such diverse topics as process control, use of simulation packages, and chemical plant design, with electives in diverse areas.

Vision

The Department of Chemical Engineering will be the undergraduate chemical engineering department of choice in Saudi Arabia and will be recognized as one of the top research and graduate chemical engineering departments in the region.

Mission

The mission of the Department of Chemical Engineering at King Fahd University of Petroleum & Minerals is to provide an innovative educational program that is rigorous and challenging as well as flexible and supportive. The program is designed to meet the challenges that our graduates are likely to face throughout their professional careers and to provide a high level of scholarship and professional capability, with highly developed skills in lifetime learning, planning, problem-solving, communication and leadership.

Program Educational Objectives

Within few years after graduation, our graduates will be able to:

- Achieve a successful career in oil, gas, petrochemicals, desalination, energy and other process industries.
- Integrate their academic preparation with chemical engineering practice and technology development.
- Pursue a graduate degree in chemical engineering or other related fields.
- Pursue leadership roles in industry, business, and government agencies.
Student Outcomes

As the outcomes of the undergraduate programs in the Department of Chemical Engineering, the students at the time of graduation are expected to demonstrate:

a. An ability to apply knowledge of mathematics, science, and engineering principles in solving chemical engineering problems.
b. An ability to design and conduct experiments, as well as to analyze and interpret data on experiments relevant to chemical engineering practice.
c. An ability to design a system, component, or a chemical process to meet desired needs within realistic constraints such as economic, environmental and safety.
d. An ability to function and work on multi-disciplinary teams.
e. An ability to identify, formulate, and solve problems important in chemical engineering practice.
f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively.
h. An ability to recognize the impact of engineering solutions in a global, economic, environmental and societal context.
i. A recognition of the need for, and an ability to engage in, life-long learning.
j. A recognition of contemporary issues related to the chemical engineering profession.
k. An ability to use the techniques, skills, and modern engineering tools necessary for chemical engineering practice.

Program Strategy

The strategy of the Department of Chemical Engineering to achieve our objectives is to:

1. Attract high-quality students, especially those with top university entrance scores, to the chemical engineering program.
2. Continually improve and update the chemical engineering curriculum.
3. Adopt and apply advances in educational technologies to improve teaching and the learning environment.
4. Develop a strong senior capstone design project course. Annual awards are presented by the Saudi Arabian Section of the American Institution of Chemical Engineers and Saudi Arabia Basic Industries Corporation (SABIC) for the best presented projects.
5. Acquire modern computerized laboratory experiments to update our laboratory program in chemical engineering.
6. Attract and retain high-quality faculty and support staff.
7. Continually improve the program through the advice of the Industrial Advisory Committee.
8. Promote a strong environmental engineering elective program as per the request of our Industrial Advisory Committee.
10. Promote the study of corrosion in industry through our SABIC-funded chair professorship.
11. Assess the program through surveys of graduating seniors, faculty, alumni, and their employers for improvement.
Requirements for the B.S. Degree in Chemical Engineering

Every student majoring in Chemical Engineering must complete the following curriculum:

(a) **General Education Requirements (62 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences</td>
<td>PHYS 101, 102, CHEM 101, 102</td>
<td>16</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 202, STAT 319</td>
<td>17</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>ENGL 101, 102, 214, IAS 101, 201, 301</td>
<td>15</td>
</tr>
<tr>
<td>Engineering Skills</td>
<td>ICS 103, CISE 301</td>
<td>6</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) **Advanced Chemical Sciences Requirements (17 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>CHEM 201, 311, 323</td>
<td>11</td>
</tr>
<tr>
<td>Material Science</td>
<td>ME 205</td>
<td>3</td>
</tr>
<tr>
<td>Biology</td>
<td>BIOL 233</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) **Core Requirements (36 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Chemical Eng.</td>
<td>CHE 201</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>CHE 202, 303</td>
<td>5</td>
</tr>
<tr>
<td>Transport Processes</td>
<td>CHE 204, 300, 304</td>
<td>9</td>
</tr>
<tr>
<td>Separation Processes</td>
<td>CHE 306</td>
<td>3</td>
</tr>
<tr>
<td>Chemical Engineering Lab</td>
<td>CHE 309, 409</td>
<td>4</td>
</tr>
<tr>
<td>Process Dynamics and Control</td>
<td>CHE 401</td>
<td>3</td>
</tr>
<tr>
<td>Kinetic and Reactor Design</td>
<td>CHE 402</td>
<td>3</td>
</tr>
<tr>
<td>Eng. Economics & Design Principles</td>
<td>CHE 425</td>
<td>3</td>
</tr>
<tr>
<td>Integrated Design</td>
<td>CHE 495</td>
<td>3</td>
</tr>
</tbody>
</table>

(d) **Electives (18 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE Electives</td>
<td>Two CHE 4xx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>Two XE xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(e) **Summer Training (0 credit hours)**

Each student must participate in an eight-week program of industrial experience and submit a formal report.

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>CHE 399</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **133**
Chemical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program: 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

	First Year (Freshman)								
CHE 101	General Chemistry I	3	4	4	MATH 102	Calculus II	4	0	4
ENGL 101	Intro. to Academic Discourse	3	0	3	CHEM 102	General Chemistry II	3	4	4
ICS 103	Computer Programming in C	2	3	3	PHYS 102	General Physics II	3	3	4
MATH 101	Calculus I	4	0	4	ENGL 102	Intro. to Writing	3	0	3
PE 101	Health and Physical Educ. I	0	2	1	IAS 101	Practical Grammar	2	0	2
PHYS 101	General Physics I	3	3	4	PE 102	Health and Physical Educ. II	0	2	1
	**Second Year (Sophomore)	15	12	19			15	9	18
CHEM 201	Organic Chemistry I	3	4	4	CHE 204	Transport Phenomena I	3	0	3
MATH 201	Calculus III	3	0	3	BIOL 233	Biology for Engineers	2	3	3
ENGL 214	Academic & Professional Comm.	3	0	3	MATH 202	Elements of Differential Eq.	3	0	3
IAS 111	Belief and its Effects	2	0	2	ME 205	Materials Science	2	3	3
	**Third Year (Junior)	14	6	15			14	8	16
CHE 300	Transport Phenomena II	3	0	3	CHE 306	Stagewise Operations	3	0	3
CHE 303	Chemical Eng. Thermodynamics	3	0	3	CHE 309	Chemical Eng. Laboratory I	0	6	2
CHE 304	Transport Phenomena III	3	0	3	CHEM 323	Instrumental Chemical Analysis	2	4	3
CHEM 311	Physical Chemistry II	3	4	4	STAT 319	Probability and Stat. for Eng. and Scientists	2	3	3
CISE 301	Numerical Methods	3	0	3	IAS 301	Language Comm. Skills	2	0	2
IAS 212	Professional Ethics	2	0	2	GS xxx	GS Elective I	3	0	3
	Summer Session	17	4	18			15	13	19
CHE 309	Summer Training	0	0	0					

	Fourth Year (Senior)								
CHE 401	Process Dynamics and Control	3	0	3	CHE 495	Integrated Design Course	1	6	3
CHE 402	Kinetics and Reactor Design	3	0	3	CHE 409	Chemical Eng. Laboratory II	0	6	2
CHE 425	Process Design and Economics	3	0	3	CHE 4xx	CHE Elective II	3	0	3
CHE 4xx	CHE Elective I	3	0	3	XE xxx	Technical Elective II	3	0	3
XE xxx	Technical Elective I	3	0	3	GS xxx	GS Elective II	3	0	3
IAS 322	Human Rights in Islam	2	0	2					
	Total credit hours required in Degree Program: 133								
Department of Civil and Environmental Engineering

Chairman: Dr. Saleh Al-Dulaijan

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduljauwad</td>
<td>Alghamdi</td>
<td>Azad</td>
</tr>
<tr>
<td>Ahmad</td>
<td>Alhajyaseen</td>
<td>Baig</td>
</tr>
<tr>
<td>Aiban</td>
<td>Al-Malack</td>
<td>Baluch</td>
</tr>
<tr>
<td>Al-Abdulwahhab</td>
<td>Al-Ofi</td>
<td>Bouchama</td>
</tr>
<tr>
<td>Al-Ahmadi</td>
<td>Al-Osta</td>
<td>Bukhari</td>
</tr>
<tr>
<td>Al-Amoudi</td>
<td>Al-Senan</td>
<td>Chowdhury</td>
</tr>
<tr>
<td>Al-Attas</td>
<td>Al-Sghan</td>
<td>Essa</td>
</tr>
<tr>
<td>Al-Dulaijan</td>
<td>Al-Shayea</td>
<td>Ibrahim</td>
</tr>
<tr>
<td>Alfarabi</td>
<td>Al-Sughaiyer</td>
<td>Khathlan</td>
</tr>
<tr>
<td>Al-Gadhib</td>
<td>Al-Suwaiyan</td>
<td>Ratrou</td>
</tr>
<tr>
<td>Al-Gahtani, A</td>
<td>Al-Zahrani, M.A</td>
<td>Vohra</td>
</tr>
<tr>
<td>Al-Gahtani, H</td>
<td>Al-Zahrani, M.M</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The Civil and Environmental Engineering major is multidisciplinary in nature. It covers aspects of studies that relate to the essential needs of mankind. It embodies the planning, design, construction, maintenance, and operation of facilities such as buildings, structures, geotechnical, transportation, water, wastewater and waste.

The four-year undergraduate curriculum in civil and Environmental engineering science provides basic knowledge in sciences, mathematics, and engineering in the first two years. Students are required to choose one of the three options within the program, namely Structural/Materials, Geotechnical/Transportation, or Water/Environmental Engineering. Certain civil engineering core and elective courses are required from students in each of the different options. During the third year, the student is introduced to different options in civil engineering with the emphasis on applications and design. After the completion of his third year, the student undertakes a summer training program in industry, where the on-the-job training provided leads to an appreciation of the practice of civil engineering. Appropriate electives are also offered to further the student’s knowledge in one or more of the areas of civil engineering. In addition, courses in humanities, social sciences and economics are integrated into the program to broaden the student’s knowledge.

The Civil and Environmental Engineering Department is equipped with modern laboratories for teaching and research in the areas of geotechnical engineering, civil engineering materials, strength of materials, structural analysis, design and modeling, highway and transportation, surveying and photogrammetry, hydraulics and hydrology, and environmental engineering. Effective use of the modern computer facilities at the University’s Information Technology Center and those available in the department constitutes an essential part of the civil engineering undergraduate curriculum.

The civil and environmental engineering science program is accredited by the Accreditation Board of Engineering and Technology (ABET) in the USA. The department undertakes a periodic assessment of its program and course learning outcomes for the continuous improvement of teaching and learning, and to ensure that the educational objectives are met.

Vision

The vision of the Department of Civil and Environmental Engineering is to establish itself as a leading center of Civil and Environmental Engineering education by supporting academic distinction and seeking excellence in teaching, learning, research and public services in partnership with the University.

Mission

The mission of the Department of Civil and Environmental Engineering is to maintain a preeminent role in teaching and research by pursuing a policy of rapid adaptation to new knowledge, discoveries, technological advances and emerging economics and to serve the public through the dissemination of knowledge and information. The department seeks to provide an environment of learning within which creative thinking, practical skills and self development are cultivated and sustained to produce qualified Civil and Environmental Engineers who will challenge the present and enrich the future.
Strategic Goals

The strategic goals set by the department to achieve the vision and mission are:

- To seek continual improvement of the teaching environment and academic programs through an arduous self-evaluation as well as extramural evaluation by peers to provide an education reflective of the essential knowledge, professional competence and skills required of the graduates for successful careers in the Civil Engineering profession.

- To readily adopt and apply advances in educational technologies to improve teaching and learning environment.

- To make the student community more motivated and responsive to learning and to instill a greater sense of responsibility and accomplishment among the students and to foster personal growth and lifelong learning.

Educational Objectives

The program aims to prepare graduates who, after few years of their career, will have

1. Successfully established themselves as practicing civil engineers

2. Demonstrated in their profession the ability to work as a responsible member of a professional team and take leadership role

3. Pursued professional career development activities to acquire new knowledge and skills.

Program Outcomes

The eleven program outcomes are:

a. Students shall have an ability to apply knowledge of mathematics, science, and engineering to engineering problems.

b. Students shall have an ability to design and conduct experiments, as well as analyze and interpret data.

c. Students shall have an ability to design a system, component, or process to meet desired needs within constraints.

d. Students shall have an ability to function on multi-disciplinary teams.

e. Students shall have an ability to identify, formulate, and solve engineering problems.

f. Students shall have an understanding of professional and ethical responsibility.

g. Students shall have an ability to communicate effectively.
h. Students shall have the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental and societal context.

i. Students shall have a recognition of the need for, and an ability to engage in lifelong learning.

j. Students shall have a knowledge of contemporary issues.

k. Students shall have an ability to use techniques, skills, and modern engineering tools including computational tools necessary for engineering practice.
Requirements for the B.S. Degree in Civil and Environmental Engineering

Every student majoring in Civil and Environmental Engineering must complete the following curriculum:

(a) **General Education Requirements (69 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214 9</td>
</tr>
<tr>
<td>Computer Skill</td>
<td>ICS 103 3</td>
</tr>
<tr>
<td>Interdisciplinary Basic Courses</td>
<td>ME 201, 203, EE 204 9</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 260 14</td>
</tr>
<tr>
<td>Sciences</td>
<td>PHYS 101, 102, CHEM 101, 111 14</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322 12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102 2</td>
</tr>
<tr>
<td>Others</td>
<td>ISE 307, MGT 301 6</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
</tr>
</tbody>
</table>

(b) **Core Requirements (43 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Graphics</td>
<td>CE 215 3</td>
</tr>
<tr>
<td>Surveying</td>
<td>CE 261 2</td>
</tr>
<tr>
<td>Mechanics and Structures</td>
<td>CE 201, 203, 305 9</td>
</tr>
<tr>
<td>Materials</td>
<td>CE 303 4</td>
</tr>
<tr>
<td>Geotechnical</td>
<td>CE 353 4</td>
</tr>
<tr>
<td>Transportation</td>
<td>CE 341, 343 4</td>
</tr>
<tr>
<td>Fluid Mechanics and Environmental Engineering</td>
<td>CE 230, 330 6</td>
</tr>
<tr>
<td>Introduction to CE Design</td>
<td>CE 312 1</td>
</tr>
<tr>
<td>Numerical and Statistical Methods in CE</td>
<td>CE 318 3</td>
</tr>
<tr>
<td>Construction Methods and Management</td>
<td>CE 421 3</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>CE 410, 412 3</td>
</tr>
<tr>
<td>CE Seminar</td>
<td>CE 490 1</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>

(c) **Electives (21 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE Electives</td>
<td>Two CE xxx Courses 6</td>
</tr>
<tr>
<td>CE Option Electives (from chosen option)</td>
<td>CE xxx, CE 4xx 6</td>
</tr>
<tr>
<td>Additional Science XXX xxx</td>
<td>GEOL 201 or GEOL 202 3</td>
</tr>
<tr>
<td></td>
<td>or BIOL xxx</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx 3</td>
</tr>
<tr>
<td>Technical Elective (from approved list)</td>
<td>XE xxx 3</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

(d) **Summer Training (0 credit hours)**

A minimum of 8-week program to gain experience; submit and present a report.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>CE 399 0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **133**
Civil and Environmental Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program: 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **First Year (Freshman)** |
CHEM 101	General Chemistry I	3	4	4	CHEM 111	Basics of Environmental Chemistry	2	0	2
ENGL 101	Intro. to Academic Discourse	3	0	3	ENGL 102	Intro. to Report Writing	3	0	3
IAS 111	Belief and its Effects	2	0	2	IAS 101	Practical Grammar	2	0	2
MATH 101	Calculus I	4	0	4	MATH 102	Calculus II	4	0	4
PE 101	Health and Physical Educ. I	0	2	1	PE 102	Health and Physical Educ. II	0	2	1
PHYS 101	General Physics I	3	3	4	ICS 103	Computer Programming in C	2	3	3
Second Year (Sophomore)									
CE 201	Statics	3	0	3	CE 203	Structural Mechanics I	3	0	3
CE 261	Surveying I	1	3	2	MATH 260	Intro. to Differential Eq. & Linear Algebra	3	0	3
ENGL 214	Academic & Professional Comm.	3	0	3	ME 201	Dynamics	3	0	3
MATH 201	Calculus III	3	0	3	IAS 212	Professional Ethics	2	0	2
XXX	xxxx Science Elective	3	0	3	ME 203	Thermodynamics I	3	0	3
Third Year (Junior)									
CE 303	Structural Materials	3	3	4	CE 312	Intro. to CE Design	1	0	1
CE 305	Structural Analysis I	3	0	3	CE 341	Transportation Eng.	3	0	3
CE 318	Numerical & Statistical Methods in CE	2	3	3	CE 343	Transportation Eng. Laboratory	3	0	3
IAS 201	Objective Writing	2	0	2	CE 353	Geotechnical Eng. I	3	0	3
CE 330	Environmental Eng. Principles	3	0	3	IAS 301	Language Comm. Skills	2	0	2
CE xxxx	CE Elective I	3	0	3	EE 204	Fundamentals of Electrical Circuits	2	3	3
Summer Session									
CE 399	Summer Training	0	0	0					
Fourth Year (Senior)									
CE xxxx	CE Elective II	3	0	3	CE 412	Senior Design Project	0	6	2
CE xxxx	Option Elective I	3	0	3	CE 421	Construction Methods and Management	3	0	3
ISE 307	Eng. Economics Analysis	3	0	3	CE 4xx	Option Elective II	3	0	3
GS xxxx	GS Elective	3	0	3	XE xxxx	Technical Elective	3	0	3
MGT 301	Principles of Management	3	0	3	IAS 322	Human Rights in Islam	2	0	2
CE 410	Senior Design Project Preparation	0	3	1	CE 490	Civil Eng. Seminar	1	0	1
Total credit hours required in Degree Program: 133									
Department of Electrical Engineering

Chairman: Dr. Ali Al-Shaikhi

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdul-Jauwad</td>
<td></td>
<td>Al-Ouali</td>
</tr>
<tr>
<td>Abido</td>
<td></td>
<td>Al-Qahtani, K</td>
</tr>
<tr>
<td>Abu-Al-Saud</td>
<td></td>
<td>Al-Qahtani, M</td>
</tr>
<tr>
<td>Abuelmaatti</td>
<td></td>
<td>Al-Saighati</td>
</tr>
<tr>
<td>Al-Abdi</td>
<td></td>
<td>Al-Shahri</td>
</tr>
<tr>
<td>Al-Ahmad</td>
<td></td>
<td>Al-Shahki</td>
</tr>
<tr>
<td>Al-Ahmadi</td>
<td></td>
<td>Al-Suhaide</td>
</tr>
<tr>
<td>Al-Akhdar</td>
<td></td>
<td>Al-Suwaile</td>
</tr>
<tr>
<td>Alawami</td>
<td></td>
<td>Al-Zaheer</td>
</tr>
<tr>
<td>Al-Baiyat</td>
<td></td>
<td>Ashraf</td>
</tr>
<tr>
<td>Al-Batal</td>
<td></td>
<td>Al-Bakhashwan</td>
</tr>
<tr>
<td>Al-Dharrab</td>
<td></td>
<td>Balghonain</td>
</tr>
<tr>
<td>Aldohan</td>
<td></td>
<td>Deriche</td>
</tr>
<tr>
<td>Al-Duwaish</td>
<td></td>
<td>El-Amin</td>
</tr>
<tr>
<td>Alghadban</td>
<td></td>
<td>Habibullah</td>
</tr>
<tr>
<td>Alghamdi</td>
<td></td>
<td>Hammim</td>
</tr>
<tr>
<td>Al-Hamouz</td>
<td></td>
<td>Hassan</td>
</tr>
<tr>
<td>Al-Jamid</td>
<td></td>
<td>Hussein</td>
</tr>
<tr>
<td>Al-Maghrabi</td>
<td></td>
<td>Ibrir</td>
</tr>
<tr>
<td>Al-Muhaini</td>
<td></td>
<td>Johar</td>
</tr>
<tr>
<td>Al-Naffoury</td>
<td></td>
<td>Kassas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mesbah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohandes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mousa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Muqabil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naveed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuruzeeman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qureshi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ragheeb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shafi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sharawi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sheikh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sorour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tasadduq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zaguirine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zidour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zummo</td>
</tr>
</tbody>
</table>
Introduction

Many of the products and services utilized all over the world are based on the work of electrical engineers. The availability of electric power for domestic and industrial use, the extensive, fast and reliable communications, and the large computational capacity achieved with modern computers are only some examples of the contributions of electrical engineers to human advancement. In addition to this, contributions by electrical engineers to the development of concepts in signals and systems, communications, simulation, analysis and control are applied in areas such as economics, management, psychology, and physiology.

In training students, the electrical engineering program emphasizes three aspects. First, subjects in science such as mathematics, physics, and chemistry enable the student to develop the necessary analytical ability and prepare him with a sound scientific foundation. Second, subjects related to humanities and general studies ensure excellent skills and a broader outlook. Third, subjects that cover the main disciplines in electrical engineering (Energy, Control, Communications, Signal Processing, Electromagnetics, Electronics, and Digital Systems) ensure a broad knowledge of electrical engineering. Students can acquire greater depth and specialization through the choice of EE electives. These three aspects are supported with laboratories, summer training and a senior project. Laboratory experience exposes the students to the instrumentation, design, engineering practice, and construction of electrical and electronic devices and circuits. Our laboratories are equipped with state-of–the-art equipment. This is complemented by a summer employment program in which the student undergoes industrial training. Team work and design aspects are further emphasized through the senior project.

The curriculum and the courses in our program undergo continuous evaluation and updating to guarantee that our graduates are at the forefront of knowledge in the field. New courses related to wireless communications, renewable energy, etc., have been introduced to match the rapid growth.

After completing the undergraduate program in electrical engineering, the student is qualified to take up responsible employment or engage in higher studies by enrolling in a graduate program. Numerous work opportunities for electrical engineers exist in the Kingdom of Saudi Arabia and overseas, where graduates may work in the areas of communications – including telephony, internet services, and point-to-point radio and television, as well as the areas of power engineering, electrical installation, broadcasting, microwave, satellite, and mobile communications. Graduates are also employed by industry for work in information processing, computers, and in systems analysis. Other opportunities exist in industrial electronics, instrumentation, manufacturing technology, and training. Some of the graduates go on to pursue their graduate studies towards the MSc or PhD either at KFUPM or at top universities around the world.

Vision

To become the best Electrical Engineering school in the region.

Mission

To provide quality education, research, and service to its constituents.
Program Educational Objectives

The Electrical Engineering Department has defined a set of Program Educational Objectives that translates its mission into defined tasks. The objectives are measures of the graduates’ achievements 3 to 5 years after completing the program. The Electrical Engineering Science program provides broad foundations to achieve the following objectives:

1. Graduates will have a successful career in Electrical Engineering.
2. Graduates will advance to the position of leadership in their profession.
3. Graduates may pursue their professional development through self-learning and advanced degrees.

Student Outcomes:

Student Outcomes are statements that describe what students are expected to know and be able to do by the time of graduation. They are related to skills, knowledge and behavior that students will acquire through the program. The Student Outcomes support the Program Educational Objectives. The Student Outcomes of the Electrical Engineering Science Program are as follows:

(a) Apply knowledge of mathematics, science, and engineering
(b) Design and conduct experiments, as well as to analyze and interpret data
(c) Design a system, component, or process to meet desired needs
(d) Function on multi-disciplinary teams
(e) Identify, formulate, and solve engineering problems
(f) Understand professional and ethical responsibility
(g) Communicate effectively
(h) Acquire the broad education necessary to understand the impact of engineering solutions in a global and societal context
(i) Recognize the need for, and be able to engage in life-long learning
(j) Acquire knowledge of contemporary issues
(k) Use the techniques, skills, and modem engineering tools necessary for engineering practice
(l) Apply the probabilistic methods and statistics to electrical engineering problems
(m) Use effectively the information technology tools to design, develop, and implement electrical systems.
Requirements for the B.S. Degree in Electrical Engineering

Every student majoring in Electrical Engineering must complete the following curriculum:

(a) **General Education Requirements (58 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 302</td>
<td>17</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Engineering Economic Analysis</td>
<td>ISE 307</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) **Core Requirements (51 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Logic Circuit Design</td>
<td>EE 200</td>
<td>4</td>
</tr>
<tr>
<td>Electrical Circuits I, II</td>
<td>EE 202, 213</td>
<td>6</td>
</tr>
<tr>
<td>Intro. to Electrical Eng.</td>
<td>EE 206</td>
<td>2</td>
</tr>
<tr>
<td>Electronics I, II</td>
<td>EE 203, 303</td>
<td>8</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>EE 207</td>
<td>3</td>
</tr>
<tr>
<td>Electric Energy Eng.</td>
<td>EE 360</td>
<td>4</td>
</tr>
<tr>
<td>Control Eng. I</td>
<td>EE 380</td>
<td>4</td>
</tr>
<tr>
<td>Electromagnetics</td>
<td>EE 340</td>
<td>4</td>
</tr>
<tr>
<td>Communications Eng. I</td>
<td>EE 370</td>
<td>4</td>
</tr>
<tr>
<td>Digital Systems Eng.</td>
<td>EE 390</td>
<td>4</td>
</tr>
<tr>
<td>Probabilistic Methods in Electrical Eng.</td>
<td>EE 315</td>
<td>3</td>
</tr>
<tr>
<td>Fundamentals of EE Design</td>
<td>EE 311</td>
<td>2</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>EE 411</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) **Electives (25 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineering Electives</td>
<td>Four EE 4xx Courses</td>
<td>13</td>
</tr>
<tr>
<td>Science or Eng. Elective</td>
<td>XXX 2xx</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>XE xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(d) **Summer Training (0 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>EE 399</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **134**
Electrical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>2</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

<table>
<thead>
<tr>
<th>First Year (Freshman)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 200</td>
<td>Digital Logic Circuit Design</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 203</td>
<td>Electronics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 213</td>
<td>Electrical Circuits II</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>EE 206</td>
<td>Intro. to Electrical Eng.</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>EE 207</td>
<td>Signals and Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX 2xx</td>
<td>Science or Eng. Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td>16</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 303</td>
<td>Electronics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 340</td>
<td>Electromagnetics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 360</td>
<td>Electric Energy Eng.</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 370</td>
<td>Communications Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 380</td>
<td>Control Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 390</td>
<td>Digital Systems Eng.</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>EE 315</td>
<td>Probabilistic Methods in Electrical Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 302</td>
<td>Eng. Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 311</td>
<td>Fundamentals of EE Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
<td>14</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 399</td>
<td>Summer Training</td>
<td></td>
<td></td>
<td></td>
<td>EE 399</td>
<td>Summer Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 4xx</td>
<td>EE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 4xx</td>
<td>EE Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 4xx</td>
<td>EE Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 4xx</td>
<td>EE Elective IV</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 411</td>
<td>Senior Design Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>XE XXX</td>
<td>Technical Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 307</td>
<td>Engineering Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GS XXX</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS XXX</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td>14</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 134
Department of Mechanical Engineering

Chairman: Dr Zuhair M. Gasem

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulazeem</td>
<td>Badour</td>
<td>Merah</td>
</tr>
<tr>
<td>Abdulkhaliq</td>
<td>Bahaidarah</td>
<td>Mezghani</td>
</tr>
<tr>
<td>Abualhamayel</td>
<td>Baig</td>
<td>Mohammed</td>
</tr>
<tr>
<td>Abu-Dheir</td>
<td>Bashmal</td>
<td>Mokheimer</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Bazoune</td>
<td>Muhammad</td>
</tr>
<tr>
<td>Akhtar</td>
<td>Binmansoor</td>
<td>Nakla</td>
</tr>
<tr>
<td>Al-Aqeeli</td>
<td>El-Shaarawi</td>
<td>Nouari</td>
</tr>
<tr>
<td>Al-Athel</td>
<td>Elsharqawy</td>
<td>Ouakad</td>
</tr>
<tr>
<td>Albinmousa</td>
<td>Furquan</td>
<td>Pashah</td>
</tr>
<tr>
<td>Al-Dini</td>
<td>Gandhidasan</td>
<td>Patel</td>
</tr>
<tr>
<td>Al-Farayedhi</td>
<td>Gasem</td>
<td>Raza</td>
</tr>
<tr>
<td>Al-Hadhrami</td>
<td>Habib</td>
<td>Sahin</td>
</tr>
<tr>
<td>Al-Kaabi</td>
<td>Hassan, F</td>
<td>Said</td>
</tr>
<tr>
<td>Al-Marbati</td>
<td>Hassan, M</td>
<td>Shaukat</td>
</tr>
<tr>
<td>Al-Nassar</td>
<td>Hawwa</td>
<td>Sheikh</td>
</tr>
<tr>
<td>Al-Qahtani, H</td>
<td>Jabbar</td>
<td>Shuaib</td>
</tr>
<tr>
<td>Al-Qahtani, M</td>
<td>Khalifà</td>
<td>Shuja</td>
</tr>
<tr>
<td>Al-Qutub</td>
<td>Khan, S</td>
<td>Sorour</td>
</tr>
<tr>
<td>Alsaeed</td>
<td>Khan, Z</td>
<td>Sunar</td>
</tr>
<tr>
<td>Al-Sarhki</td>
<td>Khulief</td>
<td>Toor</td>
</tr>
<tr>
<td>Al-Sulaiman</td>
<td>Laouï</td>
<td>Yaqub</td>
</tr>
<tr>
<td>Anis</td>
<td>Mahmod</td>
<td>Yilbas</td>
</tr>
<tr>
<td>Antar</td>
<td>Mansoor</td>
<td>Younas</td>
</tr>
<tr>
<td>Arif</td>
<td>Mansour</td>
<td>Zubair</td>
</tr>
<tr>
<td>Badr</td>
<td>Mekid</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Mechanical engineering is one of the oldest, broadest, and perhaps most versatile discipline among all engineering disciplines. Mechanical engineers use the principles of energy, mechanics, and materials to design and manufacture machines and devices of all types, and create the systems and processes that drive technology and virtually every industry. The key characteristics of the mechanical engineering profession are its breadth, flexibility, and individuality. Mechanical engineering derives its breadth from the need to design and manufacture everything from small individual components and devices to large engineering structures and systems. Its flexibility emanates from its scope involving materials, solid and fluid mechanics, thermodynamics, heat transfer, control, instrumentation, design, and manufacturing. Its individuality lies in the ever-emerging specialized mechanical engineering fields such as biomechanics, robotics, mechatronics, nanomechanics, microfluidics, micropower generation, MEMS and NEMS.

Mechanical engineering encompasses an understanding of core concepts including mechanics, kinematics, thermodynamics, heat transfer, materials science, structural and manufacturing analyses. Mechanical Engineers use these core concepts to conceive, design, develop, manufacture, and maintain devices and tools, equipment and machinery, products and plants that run the engineering industry. Mechanical engineers also use these core principles to ensure that the products are manufactured economically, and function safely, efficiently and reliably. Mechanical engineers work in the automotive, aerospace, chemical, computer, power, petrochemical, marine and machine tool manufacturing industries, to name a few. Thus, it may be safely stated that every product or service in the modern world has probably been touched in some way by a mechanical engineer.

With the above in mind, the mechanical engineering curriculum at KFUPM has been designed to provide a broad yet rigorous understanding of core mechanical engineering subjects in thermal sciences, mechanical design, materials science and manufacturing processes in the first three years of study. During these years the ME curriculum aims to develop critical thinking and problem-solving skills using the principles of science and mathematics. ME students have to take an 8-week Summer Training Program in industry. After completion of his summer training each student is required to submit a formal summer training report. In the senior year, the students have sufficient flexibility to select ME and Technical Electives from a broad spectrum of courses in the areas of thermo-fluids, design and dynamics, or materials and manufacturing. A senior Capstone Design project taken over the two final semesters provides each student with the opportunity to integrate his knowledge of the previous three years, exercise his creativity, enhance his individuality, and develop entrepreneurship skills. The ME program is evaluated by ABET every five years and received its latest accreditation in 2010.

The employment opportunities for ME graduates from KFUPM have been very good and are expected to become even better with the rapid pace of industrialization in the Kingdom of Saudi Arabia. Large-scale expansions in the petrochemical, chemical process, and power generation industries will require a growing influx of ME graduates. Also, many ambitious programs in clean water, clean energy, nanotechnology, and nuclear power generation will result in a substantial increase in the demand for ME graduates in the short and long term.

Mission
The Mechanical Engineering Department is committed to providing the highest quality education in mechanical engineering, conducting world-class basic and applied research, addressing the evolving needs of industry and society, and supporting the development of more competitive and new industries in the Kingdom of Saudi Arabia.

Vision

The Mechanical Engineering Department at KFUPM will seek distinction as a leader in providing world-class mechanical engineering education to the Kingdom of Saudi Arabia and the Gulf region. The graduates of the Department will be at the forefront of establishing, advancing, and expanding an indigenous knowledge base, which can be solidly relied upon accepting future challenges, providing proper directions for industrial growth, and furnishing reliable solutions to engineering problems.

Goals

1. Be preeminent in developing and providing the highest quality undergraduate learning environment in Mechanical Engineering education.
2. Be a world reputed Mechanical Engineering Department in graduate education, and basic and applied research.
3. Be preeminent on international level for academic, basic, and applied research.
4. Be a preeminent and leading institution for supporting the technological advancement and economic growth of the local, national, and Gulf area industry.
5. Be a leading university in human-resource development and effective and efficient infrastructure utilization.
Requirements for the B.S. Degree in Mechanical Engineering

Every student majoring in Mechanical Engineering must complete the following curriculum:

(a) General Education Requirements (67 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Programming in C</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Engineering Courses</td>
<td>CE 201, 203, EE 204, 306</td>
<td>12</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 301</td>
<td>17</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
</tbody>
</table>

(b) Core Requirements (49 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering Drawing & Graphics</td>
<td>ME 210</td>
<td>3</td>
</tr>
<tr>
<td>Intro. to Mechanical Engineering Design</td>
<td>ME 218</td>
<td>2</td>
</tr>
<tr>
<td>Dynamics, Control, Mechanics of Machines</td>
<td>ME 201, 309, 413</td>
<td>9</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>ME 203, 204</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>ME 216</td>
<td>3</td>
</tr>
<tr>
<td>Materials Lab</td>
<td>ME 217</td>
<td>1</td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>ME 322</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Lab</td>
<td>ME 323</td>
<td>1</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>ME 311</td>
<td>3</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>ME 315</td>
<td>3</td>
</tr>
<tr>
<td>Machine Design</td>
<td>ME 307, 308</td>
<td>7</td>
</tr>
<tr>
<td>Thermo Fluids Lab</td>
<td>ME 316</td>
<td>1</td>
</tr>
<tr>
<td>Design and Analysis of Engineering Experiments</td>
<td>ME 451</td>
<td>3</td>
</tr>
<tr>
<td>Measurements and Lab Project</td>
<td>ME 452</td>
<td>1</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>ME 411, 412</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) Electives (18 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical (Free) Elective</td>
<td>Two XE xxx courses</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical Engineering Elective I (Design)</td>
<td>ME 4xx</td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering Elective II (Free)</td>
<td>ME 4xx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(d) Summer Training (0 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>ME 399</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 134
Mechanical Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>15</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Preparatory Prog.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 218</td>
<td>Intro. to Mechanical Eng. Design</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 201</td>
<td>Dynamics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 210</td>
<td>Mechanical Eng. Drawing & Graphics</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 204</td>
<td>Thermodynamics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 216</td>
<td>Materials Science and Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 217</td>
<td>Materials Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ICS 303</td>
<td>Structural Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Object Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 413</td>
<td>Systems Dynamics and Control</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ME 412</td>
<td>Senior Design Project II</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>ME 451</td>
<td>Design and Analysis of Eng. Experiments</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 4xx</td>
<td>Technical Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 452</td>
<td>Measurements and Lab Project</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ME 4xx</td>
<td>Technical Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 411</td>
<td>Senior Design Project I</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ME 4xx</td>
<td>ME Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 4xx</td>
<td>ME Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>14</td>
<td>Total credit hours required in Degree Program : 134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31
COLLEGE OF COMPUTER SCIENCES & ENGINEERING

Dean: Dr. Adel Ahmed

UNDERGRADUATE DEPARTMENTS

COMPUTER ENGINEERING
INFORMATION & COMPUTER SCIENCE
SYSTEMS ENGINEERING
The College of Computer Sciences & Engineering was established in 1986. It symbolizes the desire to make computing a centerpiece of its education and research activities in the 21st century. Its main lines of business include: Computer Sciences and Engineering, Information Technology, Computer Networks and Communications, Systems Engineering, Control and Instrumentation, and Industrial Engineering.

Vision

To be a globally recognized college in Computer Sciences and Engineering Systems known for its distinguished graduates and world class research.

Mission

The College of Computer Sciences and Engineering is committed to:

- Graduate competent professionals.
- Conduct innovative research that advances the frontiers of knowledge and addresses local problems.
- Engage with society in value-adding activities.

Strategic Objectives

1. Prepare competent qualified graduates in the areas in the college line of business that exceed customer requirements.
2. Provide up to date current academic programs that meet international standards and satisfy market needs.
3. Provide a student focused integrated educational experience.
4. Build a strong, motivated and highly committed faculty community.
5. Attract, maintain and develop a qualified pool of undergraduate and graduate students.
6. Conduct research at the frontiers of knowledge in the areas specified in the college line of business with emphasis on areas that serve and sustain the Kingdom’s economic development.
7. Create and encourage partnership with industry, government, local/ international institutions and alumni.
8. Continuously build and modernize the college infrastructure including computing facilities, laboratories.

The college maintains partnerships with IT technology providers and prestigious universities for the sake of being on the top of the technology and research. Areas like Information Security, Arabization and Computer Networking are among the areas of excellence. Other allied areas in the college, such as maintenance engineering and supply chain management, have gained international recognition in partnership with local petroleum and petrochemical industries.

The college has acquired special computing facilities and computer networks with state-of-the-art technologies able to provide services that are compatible with capabilities and
expectations of faculty and students. It also provides technical support with a team of highly qualified engineers and technicians. To serve its mission the college has three administrative departments.

1. **Computer Engineering Department (COE)**

 The department offers programs in Computer Engineering. It grants B.S., M.S. and PhD degrees in Computer Engineering. The department also grants an M.S. degree in Computer Networks.

2. **Information & Computer Science Department (ICS)**

 The department offers two B.S programs; one in Computer Science and the other in Software Engineering. The department also grants an M.S. degree in Computer Science, Software Engineering, and Information Security, and a PhD degree in Computer Science.

3. **Systems Engineering Department (SE)**

 The department offers two undergraduate programs in Control and Instrumentation Systems Engineering, and in Industrial and Systems Engineering. The department also grants M.S. and PhD degrees in both areas. The department also has MS programs in Supply Chain Management and in Maintenance Engineering. It has established centers of excellence in these areas as well.

These programs prepare students for challenging science and engineering careers in the high technology areas of computing and industrial systems.

College Requirements

Common Freshman Year

College BS programs have a common freshman curriculum which is similar to the engineering programs in KFUPM. This helps students to select their major area of study as late as the beginning of the sophomore year.

Common Core Subjects

Common core subjects cover courses in basic sciences, Mathematics, English, Islamic history and culture, Arabic language and literature, Physical Education, social and behavioral sciences, and program core subjects.

Requirements for Graduation

All university graduation requirements and academic policies apply to the college.
Department of Computer Engineering

Chairman: Dr. Ahmad Almulhem

Faculty

Abdel-Aal Baig Mahmoud, M.
AbuAmara Barnawi Mohammed
Adiche Baroudi Mudawar
Alawami Chenaoua Osais
Alkharobi El-Maleh Raad
Al-Madani Elraba Rowaihy
Almulhem Garba Selmi
Al-Mouhamed Hasan Sheltami
Al-Najjar Khayyat
Amin Mahmoud, A.
Introduction

The Computer Engineering Department (COE) was established in 1986 in the College of Computer Sciences and Engineering (CCSE) at King Fahd University of Petroleum and Minerals (KFUPM). It offers a program leading to a BS degree in Computer Engineering, a program leading to an MS degree in Computer Engineering, a program leading to an MS degree in Computer Networks, and a joint PhD program with the Information and Computer Science Department.

Computer Engineering (COE) is the discipline concerned with the design, analysis, modeling and implementation of computers and networks systems. Both the software and the hardware aspects of these systems are studied in a balanced and coherent manner. As such, it is of interest and in demand locally in Saudi Arabia, regionally in the Middle East, and internationally worldwide.

The Computer Engineering program at KFUPM develops the necessary skills and competences required to design and implement computer systems and networks. The two focus areas of computer systems and computer networks are deemed as most important for the local job market (present and future). All COE core courses establish the required foundation for these two areas. Students can pursue one or a combination of these areas through electives which are all aligned with these two areas. In addition, sufficient emphasis is given to the study of computer science to provide a coherent view of computer systems and an understanding of the interdependencies of hardware and software components and their interfaces and tradeoffs. Furthermore, the COE program equips the students with many non-technical engineering skills and knowledge essential for their professional practice.

The Computer Engineering program is serving the Kingdom's critical need for computer professionals who can design and implement computer systems and networks. The graduates of the COE program are expected to play a key role in the Kingdom's transition to a knowledge-based economy by harnessing the benefits of IT technology in the different fields of governmental administrations, and manufacturing and service sectors.

Vision

The vision of the COE Department is to become a recognized center of excellence in providing quality education and technical services, as well as in advancing computing technologies through innovative research.

Mission

The mission of the Computer Engineering Department is:

1. To prepare competent professionals in the area of Computer Engineering who are competitive worldwide and prepared to be the leaders in the Saudi industry, academia and government.
2. To conduct original research that contributes to the advancement of computing technologies worldwide, solves local problems and leads to the transfer and dissemination of knowledge to the Saudi society at large.
3. To provide the Saudi society with high-quality technical services in areas related to computer engineering in terms of consultation, training and applied projects.
Program Educational Objectives

The Program Educational Objectives of the COE program is to produce graduates who, after few years from graduation, will have:

1. established themselves as successful professional computer engineers with demonstrated leadership capabilities,
2. demonstrated an ability to pursue a successful professional and career growth, and
3. enrolled and succeeded in graduate and professional studies/programs if they chose to do so

Student Outcomes

The Computer Engineering Student Outcomes are:

a. an ability to apply knowledge of mathematics, science, and engineering.
b. an ability to design and conduct experiments, as well as to analyze and interpret data.
c. an ability to design a system, component, or process to meet desired needs.
d. an ability to function on multi-disciplinary teams (Our interpretation of multidisciplinary teams includes teams of individuals with similar educational backgrounds focusing on different aspects of a project as well as teams of individuals with different educational backgrounds).
e. an ability to identify, formulate, and solve engineering problems.
f. an understanding of professional and ethical responsibility.
g. an ability to communicate effectively.
h. the broad education necessary to understand the impact of engineering solutions in a global and societal context.
i. a recognition of the need for, and an ability to engage in life-long learning (Our interpretation of this includes teaching students that the underlying theory is important because the technology changes, coupled with enhancing their self-learning ability).
j. knowledge of contemporary issues (Our interpretation of this includes presenting students with issues such as the impact of globalization, the outsourcing of both engineering and other support jobs as practiced by modern international companies).

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

With the following additional Student Outcome:
1. The ability to design a system that involves the integration of hardware and software components.
Requirements for the B.S. Degree in Computer Engineering

Option I: With Summer Training

Every student majoring in Computer Engineering (Summer Training Option) must complete the following curriculum:

<table>
<thead>
<tr>
<th>(a) General Education Requirements (52 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>Computer Programming, ICS 102</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry, CHEM 101</td>
<td>4</td>
</tr>
<tr>
<td>English, ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies, IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics, MATH 101, 102, 201, 260</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education, PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics, PHYS 101, 102</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Core Requirements (53 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 202, 203, 241, 300, 301, 306, 344, 485</td>
<td>24</td>
</tr>
<tr>
<td>ICS 201, 202, 253, 431</td>
<td>15</td>
</tr>
<tr>
<td>EE 202, 212, 203</td>
<td>8</td>
</tr>
<tr>
<td>ISE 307</td>
<td>3</td>
</tr>
<tr>
<td>STAT 319</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Electives (27 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 405 or CE 444</td>
<td>3</td>
</tr>
<tr>
<td>Four COE 4xx Courses</td>
<td>12</td>
</tr>
<tr>
<td>Two XE xxx Courses from Department’s List</td>
<td>6</td>
</tr>
<tr>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) Summer Training (0 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE 399</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 132.
Computer Engineering Curriculum – Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program:</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 102</td>
<td>Intro. to Computing I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 202</td>
<td>Digital Logic Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 202</td>
<td>Data Structures</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>COE 203</td>
<td>Digital Logic Design Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>EE 203</td>
<td>Electronics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 201</td>
<td>Intro. to Computing II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>COE 241</td>
<td>Data and Computer Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 212</td>
<td>Electrical Circuits Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>STAT 319</td>
<td>Probability and Stat. for Eng. and Scientists</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
<td>13</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 260</td>
<td>Intro. to Differential Eq. & Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>COE 306</td>
<td>Intro. to Embedded Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 253</td>
<td>Discrete Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>COE 4xx</td>
<td>COE Depth Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COE 301</td>
<td>Computer Organization</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>XE 3XX</td>
<td>Technical Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COE 344</td>
<td>Computer Networks</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>COE 300</td>
<td>Principles of Computer Eng. Design</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISE 307</td>
<td>Eng. Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year (Senior)									
ICS 431	Operating Systems	3	3	4	COE 485	Senior Design Project	1	6	3
COE 4xx	COE Elective I	3	0	3	IAS 322	Human Rights in Islam	2	0	2
COE 4xx	COE Elective II	3	0	3	COE 4xx	COE Elective III	3	0	3
XE 3xx	Technical Elective II	3	0	3	COE 4xx	COE Elective IV	3	0	3
GS 3xx	GS Elective I	3	0	3	GS 3xx	GS Elective II	3	0	3
		15	3	16			12	6	14
Requirements for the B.S. Degree in Computer Engineering

Option II: With Cooperative Work

Every student majoring in Computer Engineering (Cooperative Work Option) must complete the following curriculum:

(a) General Education Requirements (52 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 102</td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td>CHEM 101</td>
<td>4</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 260</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102</td>
<td>8</td>
</tr>
</tbody>
</table>

(b) Core Requirements (57 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE</td>
<td>COE 202, 203, 241, 300, 301, 306, 344, 485</td>
<td>24</td>
</tr>
<tr>
<td>ICS</td>
<td>ICS 201, 202, 253, 324, 431</td>
<td>19</td>
</tr>
<tr>
<td>EE</td>
<td>EE 202, 212, 203</td>
<td>8</td>
</tr>
<tr>
<td>ISE</td>
<td>ISE 307</td>
<td>3</td>
</tr>
<tr>
<td>STAT</td>
<td>STAT 319</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) Electives (15 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COE Depth Elective</td>
<td>COE 405 or CE 444</td>
<td>3</td>
</tr>
<tr>
<td>COE Electives</td>
<td>Two COE 4xx Courses</td>
<td>6</td>
</tr>
<tr>
<td>General Elective</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>COE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 133
Computer Engineering Curriculum – Cooperative Work Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 102</td>
<td>Intro. to Computing I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 202</td>
<td>Digital Logic Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 202</td>
<td>Data Structures</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>COE 203</td>
<td>Digital Logic Design Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ICS 253</td>
<td>Discrete Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 201</td>
<td>Intro. to Computing II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>EE 203</td>
<td>Electronics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EE 212</td>
<td>Electrical Circuits Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>COE 241</td>
<td>Data and Computer Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>STAT 319</td>
<td>Probability and Stat. for Eng. and Scientists</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>9</td>
<td>17</td>
<td></td>
<td></td>
<td>16</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 260</td>
<td>Intro. to Differential Eq. & Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>COE 306</td>
<td>Intro. to Embedded Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>COE 4xx</td>
<td>COE Depth Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COE 301</td>
<td>Computer Organization</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>COE 300</td>
<td>Principles of Computer Eng. Design</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>COE 344</td>
<td>Computer Networks</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>ICS 324</td>
<td>Database Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ISE 307</td>
<td>Eng. Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 350</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>6</td>
<td>19</td>
<td></td>
<td></td>
<td>15</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>COE 485</td>
<td>Senior Design Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>ICS 431</td>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 4xx</td>
<td>COE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COE 4xx</td>
<td>COE Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
<td>13</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 133
Department of Information and Computer Science

Chairman: Dr. Abdulaziz Al-Khoraidly

FACULTY

Ahmed, B Al-Suhaim Hassan
Ahmed, F Al-Turki Hassine
Ahmed, M Alvi Mahmood
Alfagih Arafat Mohammed, A
Al-Hashim Aslam Muhammed, S
Al-Herz Azzedin Mlaih
Al-Jamaan Balah Niazi
Al-Jasser Darwish Ramadan
Al-Khatib El-Alfy Sabri, M
Al-Khoraidly El-Attar Yahya
Al-Mohammadi El-Bassuny Yazdani
Al-Muhtaseb Elish Zhioua
Al-Mulhem Faisal
Al-Shayeb Ghouti
Introduction

The Information and Computer Science (ICS) Department at KFUPM was established in September 1979 and it developed and evolved over the years to become one of the most active departments of the University in teaching, research, and service to the University. Moreover, the ICS Department is recognized throughout the Gulf region and many parts of the world for its excellence in education and research. The Department provides two 4-year undergraduate programs leading to a Bachelor of Science degree in Computer Science and a Bachelor of Science degree in Software Engineering.

The two programs can be broadly defined as the study of the phenomena surrounding computing and computers. It involves the study of the theoretical principles, design and implementation of computer systems. As computers have become part of day-to-day activities, the demand for specialized professionals in the area has increased significantly.

To help meet these demands, KFUPM has established undergraduate programs that relate directly to computer science and focus on theory, design, and applications. The programs have both academic and professional orientations. Thus, they enable graduates to meet the challenges they will face in real-life applications, research and advanced studies in computer science. The programs are designed to provide several important features:

1. Breadth and depth. The programs have a set of core courses that provide breadth in the field. Additional specialized courses and electives are chosen to provide depth in the programs.
2. Balance. Theoretical core courses and software/hardware are joined in theory and in practice through integrated lecture and laboratory sequences.
3. Flexibility. The curricula are flexible and provide opportunities for students to emphasize specific areas of interest through their choice of appropriate technical and ICS elective courses.

Vision

To be a regional leader that is recognized worldwide in education, research and professional development in the areas of Computer Science and Software Engineering.

Mission

- To provide high quality undergraduate and graduate educational programs in Computer science and Software Engineering,
- To contribute significantly to the research and the discovery of new knowledge and methods in computing,
- To offer expertise, resources, and services to the community, and
- To keep its faculty members current by providing opportunities for professional development.
B.S. IN COMPUTER SCIENCE PROGRAM

The BS in Computer Science program was revised and approved by the KFUPM University Board in 2006. The program is mainly based on the ACM/IEEE-CS Joint Curriculum Task Force report titled “Computing Curricula 2001”. General education requirements, core requirements, and elective courses have been carefully selected. The program gained full ABET accreditation effective July 2010.

Program Mission

The mission of the CS program is to provide high-quality education in computer science that prepares students for professional careers and lifelong learning in developing/managing computational processes and systems, with emphasis on net-centric computing, information management, and intelligent systems.

Program Objectives

The educational objectives of the CS program are stated as follows:

1. Prepare graduates, who are entering immediately into professions upon graduation, to be capable of performing duties on an entry-level computing-related position.
2. Prepare graduates to pursue graduate studies to successfully complete an advanced degree.
3. Prepare graduates to work as individuals with minimum guidance and as leaders or members of a team.
4. Prepare graduates to follow appropriate practices within a professional, legal, and ethical framework.
5. Prepare graduates to recognize the need for and be capable of pursuing life-long learning.

Program Learning Outcomes

The CS program enables students to acquire, by the time of graduation, the following learning outcomes:

a) An ability to apply knowledge of computing and mathematics appropriate to the discipline;
b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;
c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs;
d) An ability to function effectively as team members to accomplish a common goal;
e) An understanding of professional, ethical, legal, security and social issues and responsibilities;
f) An ability to communicate effectively with a range of audiences;
g) An ability to analyze the local and global impact of computing on individuals, organizations, and society;
h) An ability to recognize the need for, and to engage in, continuing professional development;
i) An ability to use current techniques, skills, and tools necessary for computing practice;
j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices; and
k) An ability to apply design and development principles in the construction of software systems of varying complexity.

The CS Program

The department is offering the computer science program with two options:

- **Option I:** B.S. in Computer Science with summer training.
- **Option II:** B.S. in Computer Science with Coop.
Requirements for the B.S. Degree in Computer Science

Option I: With Summer Training

Every student majoring in Computer Science (Summer Training Option) must complete the following curriculum:

(a) General Education Requirements (52 credit hours)

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Science</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 260, STAT 319</td>
<td>17</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
</tbody>
</table>

(b) Core Requirements (55 credit hours)

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS</td>
<td>ICS 102, 201, 202, 233, 253, 254, 309, 324, 343, 353, 381, 410, 411, 431</td>
<td>47</td>
</tr>
<tr>
<td>COE</td>
<td>COE 202, 203</td>
<td>4</td>
</tr>
<tr>
<td>SWE</td>
<td>SWE 311</td>
<td>4</td>
</tr>
</tbody>
</table>

(c) Electives (24 credit hours)

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS Electives</td>
<td>Four ICS/SWE xxx Courses</td>
<td>12</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>Four XE xxx Courses</td>
<td>12</td>
</tr>
</tbody>
</table>

(d) Summer Training (0 credit hours)

Every student is required to participate in a summer training program of genuine practical experience and submit a formal written report.

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>ICS 399</td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 131
Computer Science Curriculum - Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Pre. Health and Medical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program:</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in First Year:</td>
<td>16</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS 201</td>
<td>Intro. to Computing I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 253</td>
<td>Discrete Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COE 202</td>
<td>Digital Logic Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Second Year:</td>
<td>17</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS 309</td>
<td>Computing and Society</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ICS 324</td>
<td>Database Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 353</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SWE 311</td>
<td>Principles of Software Eng.</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>STAT 319</td>
<td>Probability and Stat. for Eng. and Scientists</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Third Year:</td>
<td>18</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICS 410</td>
<td>Programming Languages</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 431</td>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 301</td>
<td>ICS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XE 301</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XE 301</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Fourth Year:</td>
<td>15</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 131
Requirements for the B.S. Degree in Computer Science

Option II: With Cooperative Work

Every student majoring in Computer Science (Cooperative Work Option) must complete the following curriculum:

(a) General Education Requirements (52 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Science</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 260, STAT 319</td>
<td>17</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

(b) Core Requirements (52 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS</td>
<td>ICS 102, 201, 202, 233, 253, 254, 309, 324, 343, 353, 381, 410, 431</td>
<td>44</td>
</tr>
<tr>
<td>COE</td>
<td>COE 202, 203</td>
<td>4</td>
</tr>
<tr>
<td>SWE</td>
<td>SWE 311</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

(c) Electives (18 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICS Electives</td>
<td>Four ICS xxx Courses</td>
<td>12</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>Two XE xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)

Every student is required to work for 28 weeks in industry for real practical experience and submit a formal written report.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>ICS 351</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **131**
Computer Science Curriculum – Cooperative Work Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year (Freshman)										
MATH 101	Calculus I	4	0	4	MATH 102	Calculus II	4	0	4	
PHYS 101	General Physics I	3	3	4	PHYS 102	General Physics II	3	3	4	
ENGL 101	Intro. to Academic Discourse	3	0	3	ENGL 102	Intro. to Report Writing	3	0	3	
CHEM 101	General Chemistry I	3	4	4	ICS 102	Intro. to Computing I	2	3	3	
IAS 101	Practical Grammar	2	0	2	IAS 111	Belief and its Effects	2	0	2	
PE 101	Health and Physical Educ. I	0	2	1	**Total credit hours required in Degree Program:**					**131**
Second Year (Sophomore)										
ICS 201	Intro. to Computing II	3	3	4	ICS 202	Data Structures	3	3	4	
ICS 253	Discrete Structures I	3	0	3	ICS 233	Computer Architecture & Assembly Lang.	3	3	4	
COE 202	Digital Logic Design	3	0	3	ICS 254	Discrete Structures II	3	0	3	
MATH 201	Calculus III	3	0	3	MATH 260	Intro. to Differential Eq. & Linear Algebra	3	0	3	
PE 102	Health and Physical Educ. II	0	2	1	COE 203	Digital Logic Laboratory	0	3	1	
IAS 101	Professional Ethics	2	0	2	ENGL 214	Academic & Professional Comm.	3	0	3	
Total credit hours required in Degree Program:										**131**

Third Year (Junior)										
ICS 309	Computing and Society	2	0	2	ICS 343	Fundamentals of Computer Networks	3	3	4	
ICS 324	Database Systems	3	3	4	ICS 381	Principles of Artificial Intelligence	3	0	3	
ICS 353	Design and Analysis of Algorithms	3	0	3	ICS 431	Operating Systems	3	3	4	
SWE 311	Principles of Software Eng.	3	3	4	ICS xxx	ICS Elective I	3	0	3	
IAS 201	Objective Writing	2	0	2	ICS xxx	ICS Elective II	3	0	3	
STAT 319	Probability and Stat. for Eng. and Scientists	2	3	3	IAS 322	Human Rights in Islam	2	0	2	
Total credit hours required in Degree Program:										**131**

Fourth Year (Senior)										
ICS 351	Cooperative Work	0	0	9	ICS 410	Programming Languages	3	0	3	
Total credit hours required in Degree Program:										**131**
B.S. IN SOFTWARE ENGINEERING

The program is broad-based and covers the main aspects of the software engineering discipline, namely requirements analysis, design, testing and project management. It also covers the computer science fundamentals such as computer architecture, operating systems and computer networks. The curriculum is designed to strengthen both the conceptual and practical talents of students, thereby equipping graduates with a solid background to take-up assignments in industry and to pursue higher education programs.

The software engineering program is accredited by the Accreditation Board of Engineering & Technology (ABET) of the USA.

Mission

To bring forth competent software engineers with a strong understanding of computer science bodies of knowledge and theories, who can apply sound engineering principles and methods to the cost-effective creation, development, operation and maintenance of high-quality software and are prepared for lifelong learning.

Objectives

1. Contributing Citizens
 Graduates of the SWE program at KFUPM will meet the needs of local software engineering industry and will be contributing member of the society.

2. Leadership
 Graduates of the SWE program at KFUPM will exhibit leadership in technical and business environment.

3. Self Professional Development
 Graduates of the SWE program at KFUPM will be adapting and adjusting to the rapid advancements and technical changes in the software engineering discipline.
Requirements for the B.S. Degree in Software Engineering

Every student majoring in Software Engineering must complete the following curriculum:

(a) General Education Requirements (52 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Science</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, STAT 319</td>
<td>14</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>ISE 307</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

(b) Core Requirements (65 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWE</td>
<td>SWE 205, 215, 312, 316, 326, 363, 387, 417, 418</td>
<td>26</td>
</tr>
<tr>
<td>ICS</td>
<td>ICS 102, 201, 202, 233, 253, 254, 324, 343, 353, 431</td>
<td>36</td>
</tr>
<tr>
<td>COE</td>
<td>COE 202</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>

(c) Electives (15 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWE/ICS Electives</td>
<td>Three SWE/ICS xxx Courses</td>
<td>9</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>Two XE xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

(d) Summer Training (0 credit hours)

Every student is required to participate in a summer training program of real practical experience and submit a formal written report.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>SWE 399</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **132**
Software Engineering Curriculum

Preparatory Year

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ICS 102</td>
<td>Intro. to Computing I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 132

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWE 205</td>
<td>Intro. to Software Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 202</td>
<td>Data Structures</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 201</td>
<td>Intro. to Computing II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>SWE 215</td>
<td>Software Requirements Eng.</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>COE 202</td>
<td>Digital Logic Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 233</td>
<td>Computer Architecture & Assembly Lang.</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 254</td>
<td>Discrete Structures II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 253</td>
<td>Discrete Structures I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 132

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWE 312</td>
<td>User Interface Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>SWE 326</td>
<td>Software Testing and Quality Assurance</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SWE 316</td>
<td>Software Design and Architecture</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>SWE 363</td>
<td>Web Eng. and Development</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 324</td>
<td>Database Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>SWE 387</td>
<td>Software Project Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 319</td>
<td>Probability and Stat. for Eng. and Scientists</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>ICS 343</td>
<td>Fundamentals of Computer Networks</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 132

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWE 417</td>
<td>Software Eng. Project I</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>SWE 418</td>
<td>Software Eng. Project II</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>XE xxx</td>
<td>Technical Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 431</td>
<td>Operating Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 353</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>SWE xxx</td>
<td>SWE/ICS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 307</td>
<td>Eng. Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>SWE xxx</td>
<td>SWE/ICS Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SWE xxx</td>
<td>SWE/ICS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XE xxx</td>
<td>Technical Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 132
Department of Systems Engineering

Chairman: Dr. Hesham K. Al-Fares

Faculty

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>First Name</th>
<th>Last Name</th>
<th>First Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abouheaf</td>
<td>Al-Turki</td>
<td>Kara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Amer</td>
<td>Al-Yagoub</td>
<td>Mahmoud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Dajani</td>
<td>Andijani</td>
<td>Mysorewala</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldheefallah</td>
<td>An</td>
<td>Nahas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldurgam</td>
<td>Ayar</td>
<td>Osman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Fares</td>
<td>Bendaya</td>
<td>Pirim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Ghamdi</td>
<td>Cheded</td>
<td>Rahim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Ghazi</td>
<td>Duffuaa</td>
<td>Saif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Habboubi</td>
<td>El-Ferik</td>
<td>Saleh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Moghathawi</td>
<td>Elshafei</td>
<td>Vaqar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alotaibi</td>
<td>Fahdel</td>
<td>Shokri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Shareef</td>
<td>Haroun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Sunny</td>
<td>Meraj</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The Systems Engineering department offers two programs: Control and Instrumentation Systems Engineering (CISE) and Industrial and Systems Engineering (ISE). The first program covers analysis, design, and control of engineering systems. The second program focuses on the science and technology of industrial systems. It emphasizes the analysis and design of systems to produce goods and services efficiently. Particular attention is devoted to both the physical processes involved and the environment.

Both programs are offered in two options: the summer training option or Coop option. Coop programs are implemented in many technical universities worldwide. The student usually leaves the school for one or more semesters and joins a relevant industry, where he is exposed to real life applications of what has been taught in the school. This exposure provides the student with a more mature outlook and has a significant effect on his understanding of his role as a practicing engineer.

Vision

Regional: To be the leader in the Arab region in the areas of Automation and Control, Industrial Engineering and Operations Research.

Global: To be recognized worldwide as a center of excellence in education and research in the areas of Automation and Control, Industrial Engineering and Operations Research.

Employment Opportunities

In Saudi Arabia, there is an abundance of capital but limited human resources. Automation provides ways of reducing manpower requirements in industry, agriculture, and other services. In fact, the leading petrochemical and related industries, desalination plants, and power systems within the Kingdom are already using modern automation techniques. Furthermore, Industrial Engineering and Operations Research are essential to any country embarked on an ambitious industrialization plan. Indeed, the effectiveness of an enterprise is heavily influenced by the physical arrangement of people, equipment, and materials. The industrial engineer designs many types of systems, from material handling systems to the layout of factories and offices; he determines storage needs and space requirements for manufacturing systems, provides work measurement services, calculates labor requirements, estimates the performance of proposed systems, and measures and improves the effectiveness of existing systems.

Graduates of both programs in the Systems Engineering Department are trained to use engineering principles in the solution of problems encountered in environments and situations where a quantitative basis for decision making is desirable.

Both programs provide the preparation necessary for admission to graduate programs in highly respected universities. Details of the two programs are given below.
B.S. IN INDUSTRIAL AND SYSTEMS ENGINEERING

This program is concerned with the design, improvement, and installation of integrated systems of people, materials, and equipment; it draws upon specialized knowledge and skill in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design; its goals are specifying, predicting, and evaluating the results to be obtained from such systems.

Mission

The mission of the Industrial and Systems Engineering program is to provide high-quality education, research, and community services in the areas of industrial and systems engineering. Specific components of the mission are:

- To provide a high-quality, state-of-the-art education in Industrial and Systems Engineering that produces professionals capable of performing jobs in their fields of specialization at the highest level of quality, competitiveness, and professionalism.
- To conduct research that expands knowledge in the areas of Industrial and Systems Engineering and to provide a high-quality graduate program that gives students a solid foundation in their areas of specialty.
- To provide industry with high-quality professional training, applied projects, and consultation services in the area of Industrial and Systems Engineering that are up-to-date and competitive worldwide.

ISE Program Educational Objectives

ISE graduates are expected to be, within a few years of graduation:

Objective 1: Successful professionals in ISE related areas
Objective 2: Leaders in their organizations
Objective 3: Pursuers of new knowledge to ever changing environment.

ISE Program Outcomes

The graduates of the program should be able to:

- apply knowledge of mathematics, science, and engineering;
- design and conduct experiments, as well as analyze and interpret data;
- design and improve integrated systems of people, materials, information, facilities, and technology;
- function as a member of a multi-disciplinary team;
- identify, formulate, and solve industrial and Systems engineering problems;
- understand and respect professional and ethical responsibilities;
- communicate effectively both orally and in writing;
- understand the impact of engineering solutions in a global and societal contexts;
- recognize the need for life-long learning, and an ability to engage in it;
- have a knowledge of contemporary issues;
- use up to date techniques, skills and tools of Industrial and Systems Engineering throughout their professional careers.
The main study areas involved are:

Operations Research and Statistics

Production and Quality control
Sequencing & Scheduling, Computer Aided Manufacturing and Robotics, Supply Chain Systems Modeling, Industrial Information Systems, Advanced Quality Methods, Special Topics in Production and Quality Control.

Reliability and Maintenance
Maintenance Planning and Control, Reliability and Maintainability, Industrial Safety, Special Topics in Reliability and Maintenance.

Productivity and Process Improvement
Human Factors Engineering, Industrial Safety, Productivity Engineering and Management, Process Reengineering, Industrial Strategic Planning, Special Topics in IE/OR.

Automation and Control
Requirements for the B.S. Degree in Industrial and Systems Engineering

The degree requirements for the ISE program can be grouped into five broad sets of requirements as shown below:

(a) General Education Requirements (49 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>English Language</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 260</td>
<td>14</td>
</tr>
<tr>
<td>Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>

(b) General Engineering Fundamentals (26 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Graphics</td>
<td>CE 101</td>
<td>2</td>
</tr>
<tr>
<td>Computer Programming in C</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>Electric Circuits</td>
<td>EE 202, 212</td>
<td>4</td>
</tr>
<tr>
<td>Probability and Statistics</td>
<td>ISE 205</td>
<td>3</td>
</tr>
<tr>
<td>Material Science</td>
<td>ME 216, 217</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>CISE 301</td>
<td>3</td>
</tr>
<tr>
<td>Linear Control Systems</td>
<td>CISE 302</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Economic Analysis</td>
<td>ISE 307</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

(c) Core Requirements (40 for Summer Training and 37 for Cooperative Work)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to ISE</td>
<td>ISE 201</td>
<td>1</td>
</tr>
<tr>
<td>Operations Research I</td>
<td>ISE 303</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Costing</td>
<td>ISE 304</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Quality Control</td>
<td>ISE 320</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>ME 322, 323</td>
<td>4</td>
</tr>
<tr>
<td>Work Systems and Methods</td>
<td>ISE 323</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Statistics</td>
<td>ISE 325</td>
<td>3</td>
</tr>
<tr>
<td>Data Base Design</td>
<td>ISE 361</td>
<td>3</td>
</tr>
<tr>
<td>Seminar</td>
<td>ISE 390</td>
<td>0</td>
</tr>
<tr>
<td>Industrial Engineering Design</td>
<td>ISE 391</td>
<td>2</td>
</tr>
<tr>
<td>Production Systems</td>
<td>ISE 402</td>
<td>3</td>
</tr>
<tr>
<td>Stochastic Systems Simulation</td>
<td>ISE 405</td>
<td>3</td>
</tr>
<tr>
<td>Operations Research II</td>
<td>ISE 421</td>
<td>3</td>
</tr>
<tr>
<td>Facility Layout and Location</td>
<td>ISE 422</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (only for summer training option)</td>
<td>ISE 490</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40 or 37</td>
</tr>
</tbody>
</table>

(d) Electives (18 for Summer Training and 12 for Cooperative Work)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training Option</td>
<td>12 credits of ISE courses and 6 free credits</td>
<td>18</td>
</tr>
<tr>
<td>Cooperative Work Option</td>
<td>9 credits of ISE courses and 3 free credits</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18 or 12</td>
</tr>
</tbody>
</table>
(e) Summer Training or Cooperative Work (0 or 9 credit hours)

Students taking the summer training option must spend 8 weeks of training in a facility approved by the department. Each student needs to submit a report and make an oral presentation. For cooperative work option, students must join a 28-week long industrial training program approved by the department.

<table>
<thead>
<tr>
<th>Summer Training</th>
<th>ISE 399</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>ISE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 133
Industrial and Systems Engineering Curriculum – Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program: 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>7</td>
<td>17</td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 205</td>
<td>Eng. Probability and Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 260</td>
<td>Intro. to Differential Eq. & Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ME 322</td>
<td>Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 201</td>
<td>Intro. to Industrial and Systems Eng.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ME 323</td>
<td>Manufacturing Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CE 101</td>
<td>Eng. Graphics</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 216</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>EE 212</td>
<td>Electrical Circuits Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ME 217</td>
<td>Materials Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td>14</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 303</td>
<td>Operations Research I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 304</td>
<td>Principles of Industrial Costing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 323</td>
<td>Work and Process Improvements</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ISE 307</td>
<td>Eng. Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 325</td>
<td>Eng. Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 320</td>
<td>Quality Control and Industrial Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CISE 301</td>
<td>Numerical Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 391</td>
<td>Industrial Eng. Design</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ISE 361</td>
<td>Fundamentals of Data Base Systems</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>CISE 302</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ISE 390</td>
<td>Seminars</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
<td>15</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program: 133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The total credit hours required in the Preparatory Program is 31.
- The total credit hours required in the Degree Program is 133.
<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 102</td>
<td>Intro to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 260</td>
<td>Intro. to Differential Eq. & Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 216</td>
<td>Materials Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 205</td>
<td>Eng. Probability and Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 217</td>
<td>Materials Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>ME 322</td>
<td>Manufacturing Processes</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 201</td>
<td>Intro. to Industrial and Systems Eng.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ISE 323</td>
<td>Manufacturing Lab</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CE 101</td>
<td>Eng. Graphics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ENGL 214</td>
<td>Academic &Professional Comm.</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CISE 301</td>
<td>Numerical Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 212</td>
<td>Electrical Circuits Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>IAS 390</td>
<td>Seminars</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 303</td>
<td>Operations Research I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 304</td>
<td>Principles of Industrial Costing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 307</td>
<td>Eng. Economic Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 320</td>
<td>Quality Control and Industrial Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 323</td>
<td>Work and Process Improvements</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ISE 391</td>
<td>Industrial Eng. Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 325</td>
<td>Eng. Statistics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 402</td>
<td>Production Systems and Inventory Control</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ISE 361</td>
<td>Fundamentals of Data Base Systems</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ISE 405</td>
<td>Stochastic Systems Simulation</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CISE 302</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CISE 302</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 390</td>
<td>Seminars</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 390</td>
<td>Seminars</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>ISE 421</td>
<td>Operations Research II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 422</td>
<td>Facility Layout and Location</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 4xx</td>
<td>ISE Elective I</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 4xx</td>
<td>ISE Elective II</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ISE 4xx</td>
<td>ISE Elective III</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XXX 3xx</td>
<td>Free Elective</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XXX 3xx</td>
<td>Free Elective</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XXX 3xx</td>
<td>Free Elective</td>
<td>x</td>
<td>3</td>
<td>x</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

Total credit hours required in Degree Program: 133
B.S. IN CONTROL AND INSTRUMENTATION SYSTEMS ENGINEERING

The primary thrust of this program is to graduate engineers who can carry out modern automation technology of industrial systems existing in all engineering disciplines such as the petrochemical industry, the steel industry, power systems, and the like, as well as non-industrial systems such as the automation of water supply systems and irrigation systems. This program emphasizes the analysis, design, synthesis, and optimization of control systems in order to provide the best means of controlling their dynamic behavior to produce favorable or specified outputs.

Mission

The mission of the Control and Instrumentation Systems Engineering program is to provide high-quality education, research and community services in the areas of Control and Instrumentation. Specific components of the mission are:

- To provide a high-quality, state-of-the-art education in Control, Automation, and Instrumentation Engineering that produces professionals capable of performing jobs in their fields of specialization at the highest level of quality, competitiveness and professionalism.
- To conduct research that expands knowledge in the areas of Control, Automation, and Instrumentation and to provide a high-quality graduate program that gives students a solid foundation in their areas of specialty.
- To provide industry with a high-quality professional training, applied projects, and consultation services in the area of Control, Automation, and Instrumentation that is up-to-date and competitive worldwide.

CISE Program Educational Objectives

CISE graduates are expected to be, within a few years of graduation:

- **Objective 1**: Successful professionals in CISE related areas
- **Objective 2**: Leaders in their organizations
- **Objective 3**: Pursuers of new knowledge to ever changing environment.

CISE Program Outcomes

The graduates of the CISE program should have the ability to:

- apply knowledge of mathematics, science, and engineering;
- design and conduct experiments, as well as analyze and interpret data;
- design a system component, or process to meet desired needs within realistic constraints;
- function as a member of a multi-disciplinary team;
- identify, formulate, and solve Control and Instrumentation Systems Engineering problems;
- understand and respect professional and ethical responsibility;
- communicate effectively both orally and in writing;
- understand the impact of engineering solutions in a global and societal context;
- recognize the need for life-long learning, and an ability to engage in it;
- have a knowledge of contemporary issues;
- use up to date techniques, skills and tools of Control and Instrumentation Systems Engineering throughout their professional careers.
Requirements for the B.S. Degree in Control and Instrumentation Systems Engineering

The degree requirements for the CISE program can be grouped into five broad sets of requirements as shown below:

(a) **General Education Requirements**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(52 for Summer Training and 49 for Cooperative Work)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322</td>
<td>12</td>
</tr>
<tr>
<td>English Language</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 260</td>
<td>14</td>
</tr>
<tr>
<td>Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Principles of Management (only for summer training option)</td>
<td>MGT 301</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) **General Engineering Fundamentals (26 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability and Statistics</td>
<td>ISE 205</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Economic Analysis</td>
<td>ISE 307</td>
<td>3</td>
</tr>
<tr>
<td>Electric Circuit I</td>
<td>EE 202, 212</td>
<td>4</td>
</tr>
<tr>
<td>Production Systems</td>
<td>ISE 402</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics I</td>
<td>ME 203</td>
<td>3</td>
</tr>
<tr>
<td>Computer Programming in C</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>Electronics I</td>
<td>EE 203</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>CISE 301</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) **Core Requirements (40 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to CISE</td>
<td>CISE 201</td>
<td>1</td>
</tr>
<tr>
<td>Design of Digital Systems</td>
<td>CISE 204</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Information Technology</td>
<td>CISE 209</td>
<td>2</td>
</tr>
<tr>
<td>Linear Control Systems</td>
<td>CISE 302</td>
<td>4</td>
</tr>
<tr>
<td>Instrumentation Engineering</td>
<td>CISE 312</td>
<td>3</td>
</tr>
<tr>
<td>Automation Devices and Electronics</td>
<td>CISE 313</td>
<td>3</td>
</tr>
<tr>
<td>Signals and Systems</td>
<td>CISE 315</td>
<td>3</td>
</tr>
<tr>
<td>Control Systems Design</td>
<td>CISE 316</td>
<td>3</td>
</tr>
<tr>
<td>Computer Control Systems</td>
<td>CISE 318</td>
<td>3</td>
</tr>
<tr>
<td>Seminars</td>
<td>CISE 390</td>
<td>0</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>CISE 412</td>
<td>3</td>
</tr>
<tr>
<td>Embedded Control Systems</td>
<td>CISE 414</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Process Control</td>
<td>CISE 418</td>
<td>3</td>
</tr>
<tr>
<td>Instrumentation for Process Control</td>
<td>CISE 438</td>
<td>3</td>
</tr>
<tr>
<td>Senior Design Project</td>
<td>CISE 490</td>
<td>3</td>
</tr>
</tbody>
</table>

(d) **Electives (14 for Summer Training and 8 for Cooperative Work)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training Option</td>
<td>9</td>
<td>ISE courses and 5 credits free</td>
</tr>
<tr>
<td>Cooperative Work Option</td>
<td>6</td>
<td>ISE courses and 2 credits free</td>
</tr>
</tbody>
</table>
(e) Summer Training or Cooperative Work (0 or 9 credit hours)
Students taking the summer training option must spend 8 weeks of training in a facility approved by the department. Each student needs to submit a report and make an oral presentation. For cooperative work option, students must join a 28-week long industrial training program approved by the department.

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Course Code</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>CISE 399</td>
<td>0</td>
</tr>
<tr>
<td>Cooperative Work</td>
<td>CISE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

| | | 0 or 9 |

The total number of credit hours required is **132**
Control and Instrumentation Systems Engineering Curriculum

Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>14</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Pre. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Pre. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Pre. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td>13</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CISE 201</td>
<td>Intro. to Control and Instrumentation</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EE 202</td>
<td>Electrical Circuits I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 212</td>
<td>Electrical Circuits Laboratory</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CISE 209</td>
<td>Intro. to Information Technology</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td>14</td>
<td>6</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISE 302</td>
<td>Linear Control Systems</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CISE 313</td>
<td>Automation Devices and Electronics</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CISE 315</td>
<td>Signals and Systems</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CISE 301</td>
<td>Numerical Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective I</td>
<td>x</td>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td>13+ 6+</td>
<td>18</td>
<td>11+ 9+</td>
<td>17</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISE 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control and Instrumentation Systems Engineering Curriculum
Cooperative Work Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

First Year (Freshman)					**Second Year (Sophomore)**				
MATH 101	Calculus I	4	0	4	MATH 102	Calculus II	4	0	4
PHYS 101	General Physics I	3	3	4	PHYS 102	General Physics II	3	3	4
ENGL 101	Intro. to Academic Discourse	3	0	3	ICS 103	Computer Programming in C	2	3	3
CHEM 101	General Chemistry I	3	4	4	ENGL 102	Intro. to Report Writing	3	0	3
IAS 101	Practical Grammar	2	0	2	IAS 111	Belief and its Effects	2	0	2
PE 101	Health and Physical Educ. I	0	2	1	PE 102	Health and Physical Educ. II	0	2	1
		15	9	18			14	8	17

Third Year (Junior)					**Fourth Year (Senior)**				
CISE 302	Linear Control Systems	3	3	4	CISE 312	Instrumentation Eng.	2	3	3
CISE 313	Automation Devices and Electronics	2	3	3	CISE 316	Control Systems Design	2	3	3
CISE 315	Signals and Systems	3	0	3	CISE 318	Computer Control Systems	2	3	3
CISE 301	Numerical Methods	3	0	3	CISE 4xx	CISE Elective I	x	x	3
IAS 322	Human Rights in Islam	2	0	2	ISE 402	Production Systems and Inventory Control	3	0	3
ISE 307	Eng. Economic Analysis	3	0	3	CISE 390	Seminars	0	0	0
		16	6	18			9+	18+	18

Summer Session
| CISE 350 | Begin Cooperative Work | 0 | 0 | 0 |

| **Total credit hours required in Degree Program** | 132 |
COLLEGE OF ENVIRONMENTAL DESIGN

Dean: Dr. Adel S. Aldosary

UNDERGRADUATE DEPARTMENTS

ARCHITECTURAL ENGINEERING
ARCHITECTURE
CITY PLANNING
The College of Environmental Design was established during the 1400 – 1401 (1980-1981) academic year to meet the large demand for professionals in the construction industry, resulting from the extensive ongoing construction program throughout the Kingdom of Saudi Arabia. The College was established to bring together the academic programs that are mainly concerned with the built environment, both natural and man-made and to prepare students for professional practice in Architecture, Architectural Engineering, Construction Engineering and Management and City Planning. The College has four departments: Architectural Engineering, Architecture, Construction Engineering & Management and City & Regional Planning, and offers Bachelor’s degrees in Architectural Engineering, Architecture, City Planning, and Master’s degrees in Architectural Engineering, Construction Engineering and Management and City and Regional Planning.

The Architectural Engineering Department was established in 1975 as a part of the College of Engineering Sciences. In 1980, the program formed the nucleus of the newly established College of Environmental Design. The Architectural Engineering undergraduate program emphasizes the importance of structural mechanical and environmental factors in the design of building systems. Additionally, it emphasizes building construction, operation, and maintenance.

The Architecture Department was established in 1981. It offers a Bachelor’s degree in Architecture with emphasis on Architectural Design. Apart from design, however, students also have the option of a minor in one of the areas of Computer Aided Architectural Design, Urban Design, and Regional Architecture. The Architecture Department has evolved into a leading school of architecture in the region.

The City Planning Department was established in 1989. The ultimate goal of this program is to provide students with a coherent understanding of contemporary planning, such as combining a good theoretical background with the dynamics of professional practices and the society at large. In addition to special technical skills, the program helps each student to acquire an interdisciplinary education that leads to an understanding of the physical and social environments, their problems, and their potentialities for enriching human life. The main objectives of the program are, therefore:

- Offer a program leading to the degree of Bachelor of Science in City Planning.
- Equip the prospective students with the professional capability to sustain and enhance the quality of life in cities and regions.
- Meet the growing demands in the local market for qualified graduates with GIS background.

The Construction Engineering and Management Department was established in 1984. It offers a graduate program in Construction Engineering and Management with the aim of providing professional managers for the construction industry or for further study at the doctoral level leading to careers in teaching and research. In addition, a Master of Engineering Management was established in 2010. The program’s objectives are to provide engineers with advancement opportunities as managers in the areas of engineering, design, research and development projects; to assist professional engineering managers to help research competitiveness in the global marketplace; to teach the skills and mechanisms necessary to deal with changes associated with managing new and breakthrough technologies; and to train engineers to plan, design, manage, and control complex technological projects.
Mission and Philosophy

The mission of the College of Environmental Design is to be the leading institution in the region that prepares students for leadership roles in the professions that plan, design, construct and manage the built environment. Consistent with the above mission, the educational philosophy of the College of Environmental Design, as its name suggests, is to develop interdisciplinary relations between professionals who share a common concern for the design of the built environment. In recognition of this commonality, the college has been organized as one unit with shared common facilities and resources. The realization of this philosophy comes by allowing students, whatever their chosen specialty is, to share knowledge and classroom experience received from highly qualified instructors. Each undergraduate program requires five years of study, with the first year providing preparatory English and Mathematics. The College requires all students to attend a summer session or a coop program as an introduction to professional practice.

In harmony with the nature of KFUPM as a technological university and in consideration of the present and future needs of Saudi Arabia, all the programs in the College introduce basic science courses and are heavily oriented towards the teaching of physical design principles and the application of advanced technology.

Features

The College is housed in building 19, adjacent to both the KFUPM Conference Center and the Information Technology Center. An important feature of the design of the facilities is the inclusion of studios as well as offices, laboratories, and support areas.

Graduation Requirements

To qualify for the B.S. degree from one of the programs in the College of Environmental Design, the candidate must:

(1) complete all curricular requirements for the degree as outlined in this bulletin;
(2) achieve a cumulative GPA of 2.00 or more in all courses taken in or offered by Major department;
(3) achieve a cumulative GPA of 2.00 or more in all credit courses taken at KFUPM as an undergraduate; and
(4) complete a summer internship/cooperative program.
Department of Architectural Engineering

Chairman: Dr. Baqer Al-Ramadan

Faculty

<table>
<thead>
<tr>
<th>Abdou</th>
<th>Asif</th>
<th>Khan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Hammad</td>
<td>Budaiwi</td>
<td>Kim</td>
</tr>
<tr>
<td>Al-Homoud</td>
<td>Hassanain</td>
<td>Nair</td>
</tr>
<tr>
<td>Al-Shibani</td>
<td>Khaiyat</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The KFUPM Architectural Engineering Department was established in 1975 under the College of Engineering Sciences. In 1980, the program formed the nucleus of the newly established College of Environmental Design. As the name implies, Architectural Engineering is related to both architecture as well as engineering. However, Architectural Engineering as a discipline is distinguished from Architecture by its emphasis on the technology and engineering aspects related to Building Design, Construction and Operation. Since its establishment, the Department has successfully supplied both government and private sectors with many high-quality Architectural Engineers. In order to maintain world-class education, the program has been reviewed by the Accreditation Board of Engineering and Technology (ABET). This organization, which evaluates engineering schools in the US, has declared that the KFUPM Architectural Engineering Program is accredited.

The curriculum places strong emphasis on studies related to each of the building technology and engineering areas such as: Building Structural and Environmental Control Systems. The curriculum also requires courses in building materials, construction systems and architectural design, construction management, building economics and computer applications in building design. Within the above general framework, the student can orient his study in the senior year to concentrate on one of the following specific areas:

1. Building Structural Systems
2. Building Environmental Control Systems
3. Construction and Maintenance Management
4. Computer-Aided Building Design

The emphasis is selected by the student and is made at the beginning of the senior year by which time he would have completed most of the fundamental courses in all the above areas.

The plan of study in Architectural Engineering consists of 133 credit hours of course work, which include essentially the same basic requirements as other engineering programs in the areas of physics, chemistry, mathematics, engineering science and social science and humanities. The program is composed of 57 credit hours as general education requirements, 70 credit hours as core requirements and 6 credit hours as electives. The student is offered two opportunities to gain practical experience during his study. He can spend 8 weeks during summer or he may choose to spend 28 weeks in a more intensive Coop program in the building industry. The student is expected to finish the B.S. degree in 4 years in addition to one year spent in the Orientation Program.

Vision

To be a leader in providing outstanding Architectural Engineering education, research, and community services to create sustainable built environment in Saudi Arabia and beyond.

Mission

To create sustainable build environment in Saudi Arabia and beyond through:

- A lifelong learning environment and graduating leaders in Architectural Engineering
- Conducting outstanding research
• Imparting professional services to the industry and community at large.

Program Educational Objectives

The undergraduate program in Architectural Engineering is designed to produce graduates who, in few (3-5) years after graduation, will be:

1. Practicing the design of building systems, managing building projects and solving related problems based on sound engineering principles, and ethics as demanded by the work and the profession.
2. Qualified to meet the challenges of working in a multi-disciplinary environment and assuming leadership responsibilities in diverse areas of the profession.
3. Advancing professionally, and educationally (as desired) to meet the changing local and global demands and emerging technologies.
4. Engaged effectively in consulting and service activities related to the built environment / building industry to serve the profession and the society at large.
Requirements for the B.S. Degree in Architectural Engineering
Option I: With Summer Training

Every student majoring in Architectural Engineering (Summer Training Option) must complete the following curriculum:

(a) General Education Requirements (57 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>History of Architecture I</td>
<td>ARC 110</td>
<td>2</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 202, 321, STAT 319</td>
<td>20</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>PHYS 101, 102, CHEM 101</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

(b) Core Requirements (70 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Materials & Construction</td>
<td>ARE 211, 212, 303</td>
<td>9</td>
</tr>
<tr>
<td>Computer Sciences</td>
<td>ICS 102, ARE 222</td>
<td>5</td>
</tr>
<tr>
<td>Construction Management</td>
<td>ARE 413, 431</td>
<td>6</td>
</tr>
<tr>
<td>Building Environmental Systems</td>
<td>ARE 320, 322, 325, 345, EE 308</td>
<td>12</td>
</tr>
<tr>
<td>General Engineering</td>
<td>CE 230, 261, 353, ME 203, EE 204</td>
<td>15</td>
</tr>
<tr>
<td>Graphics & Architectural Design</td>
<td>ARE 101, 202, 301</td>
<td>8</td>
</tr>
<tr>
<td>Senior Project</td>
<td>ARE 400</td>
<td>3</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>CE 201, 203, 305, 315</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

(c) Electives (6 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any two courses of:</td>
<td>ARE 440, 442, 443, 444, 445, 446, 450, 452, 455, 456, 457, 458, 490, CE 408, 415</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

(d) Summer Training (0 credit hours)

Each student must undergo an eight week training in a consulting office or construction office/site.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>ARE 399</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 133
Architectural Engineering Curriculum – Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year (Freshman)												
ARE 101	Architectural Graphics	0	6	2	CHEM 101	General Chemistry I	3	4	4			
MATH 101	Calculus I	4	0	4	ICS 102	Intro. to Computing I	2	3	3			
PHYS 101	General Physics I	3	3	4	MATH 102	Calculus II	4	0	4			
ENGL 101	Intro. to Academic Discourse	3	0	3	PHYS 102	General Physics II	3	3	4			
IAS 101	Practical Grammar	2	0	2	ENGL 102	Intro. to Report Writing	3	0	3			
IAS 111	Belief and its Effects	2	0	2	PE 102	Health and Physical Educ. II	0	2	1			
PE 101	Health and Physical Educ. I	0	2	1								
		14	**11**	**18**								
Second Year (Sophomore)												
ARE 211	Building Materials	2	3	3	ARE 202	Architectural Design I	0	9	3			
ARE 222	Computer Applications in Building Design	1	3	2	ARE 212	Construction Systems	3	0	3			
ARC 110	History of Architecture I	2	0	2	MATH 202	Elements of Differential Eq.	3	0	3			
MATH 201	Calculus III	3	0	3	EE 204	Fundamentals of Electrical Circuits	2	3	3			
ME 203	Thermodynamics I	3	0	3	CE 203	Structural Mechanics I	3	0	3			
CE 201	Statics	3	0	3	CE 230	Eng. Fluid Mechanics	3	0	3			
CE 261	Surveying I	1	3	2								
		15	**9**	**18**								
Third Year (Junior)												
ARE 303	Working Drawings	0	9	3	ARE 301	Architectural Design II	0	9	3			
ARE 322	Building Mechanical Systems	2	3	3	ARE 325	Building Illumination	1	3	2			
MATH 321	Intro. to Numerical Computing	3	0	3	ARE 345	Principles of Heating, Ventilating, and AC	3	0	3			
CE 305	Structural Analysis I	3	0	3	CE 315	Reinforced Concrete I	2	3	3			
EE 308	Building Electrical Systems Design	2	0	2	STAT 319	Probability and Stat. for Eng. and Scientists	2	3	3			
ENGL 214	Academic & Professional Comm.	3	0	3	IAS 201	Objective Writing	2	0	2			
		13	**12**	**17**								
Summer Session												
ARE 399	Summer Training											
		12	**18**	**18**								

Fourth Year (Senior)												
ARE 320	Architectural Acoustics	1	3	2	ARE 413	Construction Management	3	0	3			
ARE 400	Senior Design Project	0	9	3	ARE 431	Building Economy	3	0	3			
ARE 4xx	ARE Elective I	3	0	3	ARE 4xx	ARE Elective II	3	0	3			
IAS 301	Language Comm. Skills	2	0	2	CE 353	Geotechnical Eng. I	3	3	4			
IAS 322	Human Rights in Islam	2	0	2								
		8	**12**	**12**								
Total credit hours required in Degree Program:		12	3	13								
Requirements for the B.S. Degree in Architectural Engineering
Option II: With Cooperative Work

Every student majoring in Architectural Engineering (Cooperative Work Option) must complete the following curriculum:

(a) General Education Requirements (57 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>History of Architecture I</td>
<td>ARC 110</td>
<td>2</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 202, 321, STAT 319</td>
<td>20</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>PHYS 101, 102, CHEM 101</td>
<td>12</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) Core Requirements (67 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Materials & Construction</td>
<td>ARE 211, 212, 303</td>
<td>9</td>
</tr>
<tr>
<td>Computer Sciences</td>
<td>ICS 102, ARE 222</td>
<td>5</td>
</tr>
<tr>
<td>Construction Management</td>
<td>ARE 413, 431</td>
<td>6</td>
</tr>
<tr>
<td>Building Environmental Systems</td>
<td>ARE 320, 322, 325, 345, EE 308</td>
<td>12</td>
</tr>
<tr>
<td>General Engineering</td>
<td>CE 230, 261, 353, ME 203, EE 204</td>
<td>15</td>
</tr>
<tr>
<td>Graphics & Architectural Design</td>
<td>ARE 101, 202, 301</td>
<td>8</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>CE 201, 203, 305, 315</td>
<td>12</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)
Each student must participate in a 28-week program of industrial training approved by the department and must submit a comprehensive report on his work during that period.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>ARE 351</td>
<td>9</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 133.
Architectural Engineering Curriculum – Cooperative Work Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Pre. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Pre. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE 101</td>
<td>Architectural Graphics</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE 211</td>
<td>Building Materials</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ARE 222</td>
<td>Computer Applications in Building Design</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ARC 110</td>
<td>History of Architecture I</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 201</td>
<td>Statics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 261</td>
<td>Surveying I</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE 303</td>
<td>Working Drawings</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>ARE 320</td>
<td>Architectural Acoustics</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ARE 322</td>
<td>Building Mechanical Systems</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Intro. to Numerical Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 305</td>
<td>Structural Analysis I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EE 308</td>
<td>Building Electrical Systems Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>ARE 413</td>
<td>Construction Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARE 431</td>
<td>Building Economy</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 353</td>
<td>Geotechnical Eng. I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Summertime Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARE 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total credit hours required in Degree Program: 133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Department of Architecture

Chairman: Dr. Mohammad Babsail

Faculty

<table>
<thead>
<tr>
<th>Abd El Fattah</th>
<th>Al-Mahdy</th>
<th>Ashmeel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Abbad</td>
<td>Al-Najjar</td>
<td>Ashour</td>
</tr>
<tr>
<td>Al-Khabbaz</td>
<td>Al-Nazhah</td>
<td>Babsail</td>
</tr>
<tr>
<td>Al-Kharoubi</td>
<td>Al-Qawasmi</td>
<td>Zami</td>
</tr>
</tbody>
</table>
Vision

The vision of the Department of Architecture is to become the premiere School of Architecture in the region and establish an outstanding international presence.

Mission

The mission of the Department of Architecture, College of Environmental Design at KFUPM, is pursued in the highest academic tradition of the University through: 1) Excellence in Teaching, 2) Exploration and Dissemination of Knowledge through Scholarly Research and Exemplary Artistic Production, and 3) the Advancement and Application of Professional Knowledge and Expertise through Community Service.

Goals

To graduate architects with highly developed skills in the areas of programming, planning and design of buildings. Additionally, the program seeks to familiarize students with the information technology, needed for planning and managing complex processes and information systems needed for managing the built environment. It is also part of the goal of the program to graduate architects who contribute to the preservation of the architectural heritage of Saudi Arabia and to the development of an architectural identity for the country.

Strategies for achieving the program goals

The goals of the architecture program are achieved through regular review and assessment of the program and associated educational processes to improve and ensure quality, the introduction of courses and minor areas of concentration in the curriculum to ensure the acquisition of specific skills, expanding the program of information technology investment and renewal to ensure availability of state of the art systems for information technology instruction; focus in design exercises on heritage and local issues, and regular educational field trips and heritage exhibitions.

Curriculum Emphasis

The emphasis of the architecture program is on architectural design and the application of information technology in design. This emphasis is reflected in the curriculum which includes eight sequential semesters of Design Studios backed by lectures in the following essential subject groups:

-Theory and History of Architecture
-Structures and Building Systems
-Construction Materials, Methods, and Systems
-Mechanical and Environmental Support Systems
-Computer Aided Design
-Professional Practice
-Electives

The program also offers the opportunity for minor specialization in the areas of Computer Aided Design, Urban Design and Regional Architecture through the selection of elective courses and the choice of studio projects. The senior project selection must also reflect the choice of minor.
Requirements for the B.S. Degree in Architecture

Every student majoring in Architecture must complete the following curriculum:

(a) **General Education Requirements (30 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENG 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENG 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>PHYS 133</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 132</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

(b) **Core Requirements (107 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Studios & Projects</td>
<td>ARC 101, 202, 203, 304, 305, 400, 406, 408</td>
<td>42</td>
</tr>
<tr>
<td>Architectural Graphics</td>
<td>ARC 100</td>
<td>5</td>
</tr>
<tr>
<td>Construction Documents</td>
<td>ARC 407</td>
<td>3</td>
</tr>
<tr>
<td>History and Theory of Architecture</td>
<td>ARC 110, 112, 210, 313, 314</td>
<td>10</td>
</tr>
<tr>
<td>Urban Design</td>
<td>ARC 251</td>
<td>2</td>
</tr>
<tr>
<td>Architecture of Saudi Arabia</td>
<td>ARC 281</td>
<td>2</td>
</tr>
<tr>
<td>Design Determinants for Arid Regions</td>
<td>ARC 435</td>
<td>2</td>
</tr>
<tr>
<td>Man and Built Environment</td>
<td>ARC 132</td>
<td>2</td>
</tr>
<tr>
<td>Professional Practice</td>
<td>ARC 426</td>
<td>3</td>
</tr>
<tr>
<td>Perception, Geometry and Color</td>
<td>ARC 315</td>
<td>2</td>
</tr>
<tr>
<td>Cognate Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Materials and Construction</td>
<td>ARE 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical Systems, Acoustics, Illumination</td>
<td>ARE 322, 328</td>
<td>6</td>
</tr>
<tr>
<td>Computer Studies</td>
<td>ARC 124, 225</td>
<td>6</td>
</tr>
<tr>
<td>Structures and Surveying</td>
<td>ARC 221, 222, 323, CE 261</td>
<td>11</td>
</tr>
<tr>
<td>Housing Design</td>
<td>ARC 353</td>
<td>2</td>
</tr>
<tr>
<td>Building Economy</td>
<td>ARE 431</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
</tr>
</tbody>
</table>

(c) **Electives (9 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option Electives</td>
<td>Two ARC xxx Courses</td>
<td>4</td>
</tr>
<tr>
<td>Architecture Elective</td>
<td>ARC xxx</td>
<td>2</td>
</tr>
<tr>
<td>Free Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

(d) **Summer Training (1 credit hour)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>ARC 399</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **147**
Architecture curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

First Year (Freshman)

					ARC 100	Architectural Graphics	0	10	5
					ARC 110	History of Architecture I	2	0	2
					ARC 132	Man and Built Environment	2	0	2
					ENGL 101	Intro. to Academic Discourse	3	0	3
					MATH 132	Applied Calculus	3	0	3
					IAS 111	Belief and its Effects	2	0	2
					PE 101	Health and Physics Educ. I	0	2	1
							12	12	18
					IAS 101	Practical Grammar	2	0	2

Second Year (Sophomore)

					ARC 202	Design Studio II	0	10	5
					ARC 210	History of Architecture III	2	0	2
					ARC 221	Structures in Architecture I	3	0	3
					ARC 225	Virtual Reality in Architecture	2	3	3
					ARE 211	Building Materials	2	3	3
					IAS 212	Professional Ethics	2	0	2
							11	16	18
					ENGL 214	Acad. & Professional Comm.	3	0	3
					CE 261	Surveying	1	3	2

Third Year (Junior)

					ARC 304	Design Studio IV	0	12	6
					ARC 313	Theory of Architecture I	2	0	2
					ARC 315	Perception, Geometry and Color	2	0	2
					ARC 322	Structures in Architecture III	3	0	3
					ARE 322	Building Mechanical Systems	2	3	3
					IAS 201	Objective Writing	2	0	2
							11	15	18
							12	12	18

Fourth Year (Senior)

					ARC 400	Senior Project Preparation and Program.	2	0	2
					ARC 406	Design Studio VI	0	12	6
					ARC 407	Construction Documents	0	6	3
					ARC 435	Design Determinants for Arid Regions	2	0	2
					IAS 301	Language Comm. Skills	2	0	2
							8	18	17
							7	14	14

Total credit hours required in Degree Program: 147
Department of City and Regional Planning

Chairman: Dr. Adel S. Aldosary

Faculty

<table>
<thead>
<tr>
<th>Aldosary</th>
<th>Alshuwaikhat</th>
<th>Nahiduzzaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Naser</td>
<td>Gim</td>
<td>Tauhidur Rahman</td>
</tr>
<tr>
<td>Al-Ramadan</td>
<td>Kadrin</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

The field of City Planning attempts to investigate and provide solutions to planning problems with a view towards shaping the current and future urban environment. Thus, city planners develop such solutions by moving systematically through a time-related process which requires defining goals, analyzing information, formulating plans, setting priorities, and designing programs of actions.

To deal with the complex problems of the urban environment, city planners require considerable skills, knowledge and insight, plus the ability to understand the social, economic, physical, and political interrelationships, which characterize urban goals and problems. Beyond the nature of such plans, city planners must also be prepared to make day-to-day decisions that affect the well being of urban inhabitants. The ability to surmount the increasing challenges of planning can be greatly assisted by considering geographic information system (GIS) and related information technology, early in planning education.

Undergraduate city planning education leads to diverse careers through professional employment or graduate studies in the same field or related professions. In the public sector, city planners are found in municipalities and numerous government agencies. Increasingly, city planners are moving into various private sector jobs, such as consultant firms, utility companies, development companies, financial institutions, national and regional commercial corporations, research organizations, and special interest groups. Being able to work in these different areas is thus assisted by the knowledge of GIS which is an intermediary platform that mediates various disciplines and professions.

Program Objectives

The ultimate goal of this program is to provide students with a coherent understanding of contemporary planning, such as combining a good theoretical background with the dynamics of professional practices and the society at large. In addition to special technical skills, the program helps each student to acquire an interdisciplinary education that leads to an understanding of the physical and social environment, their problems, and their potentialities for enriching human life. The main objectives of the program are, therefore, to:

- Offer a program leading to the degree of Bachelor of Science in City Planning.
- Equip the prospective students with the professional capability to sustain and enhance the quality of life in cities and regions.
- Meet the growing demands in the local market for qualified graduates with GIS background.

The Program

The Department of City and Regional Planning at KFUPM offers a program leading to the degree of Bachelor of Science in “City Planning.” This degree is granted after the completion of 125 credit hours. The department is offering this program with two options:

Option I: B.S. in City Planning with Summer Training.
Option II: B.S. in City Planning with Cooperative Work.
The curriculum, in each option, consists of four major requirements: General Education requirements (38 credit hours for both options), Core requirements (73 credit hours for Option I; 64 credit hours for Option II), a Summer Training (for Option I only; 0 credit hours) or Cooperative Work (for Option II only; 9 credit hours), and elective courses (14 credit hours for both options).

General Education requirement courses focus on vital basic areas such as communication skills, mathematics, and natural sciences. Core requirement courses cover planning theory and history, planning workshops, environmental planning, policies and public works, land use and transportation, sustainable development and impact assessment, analytical methods, computer applications, as well as socio-economic dynamics of urban societies.
Requirements for the B.S. Degree in City and Regional Planning
Option I: With Summer Training

Every student majoring in City and Regional Planning (Summer Training Option) must complete the following curriculum:

(a) General Education Requirements (38 credit hours)	Credit Hours
Communication Skills | ENGL 214, IAS 101, 201, 301 | 9
English | ENGL 101, 102 | 6
Architectural Graphics | ARC 100 | 5
Islamic Studies | IAS 111, 212, 322 | 6
Mathematics | MATH 131, 132 | 6
Natural Sciences | PHYS 133 | 4
Physical Education | PE 101, 102 | 2

(b) Core Requirements (73 credit hours)

Course Description	Credits
Introduction to City Planning and Theory | CP 101, 201 | 6
Planning Workshops | CP 210, 310, 315, 410 | 16
Senior Planning Project and Preparation | CP 401, 499 | 5
Analytical Methods | STAT 211, CP 301, 306 | 9
GIS and IT | ICS 102, CP 203, 206, 308 | 12
Socio-Economics | CP 205, ARC 482 | 5
Policies and Housing | CP 202, ARC 353 | 5
Land Use and Transportation | CP 204, 307 | 6
Environmental Plan. & Sustainable Development | CP 302, 402 | 4
Surveying and Remote Sensing | CE 261, CP 303 | 5

(c) Electives (14 credit hours)

Elective Type	Courses	Credits
CP Electives | 6 credit hours from: CP 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 490 | 6
Free Electives | 6 credit hours of 300 level or above courses from any other department | 6
IAS Elective | IAS 4xx | 2

(d) Summer Training (0 credit hours)

Each student in this option must undergo eight-week training in a professional planning office.

Course	Credits
Summer Training | CP 399 | 0

The total number of credit hours required is 125
City Planning Curriculum – Summer Training Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 004</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

| **First Year (Freshman)** |
ARC	Architectural Graphics	0	10	5	CP	Intro. to City Planning	3	0	3
ENGL	Intro. to Academic Discourse	3	0	3	ENGL 102	Intro. to Report Writing	3	0	3
MATH	Finite Mathematics	3	0	3	MATH 132	Applied Calculus	3	0	3
PHYS	Principles of Physics	3	3	4	IAS 101	Practical Grammar	2	0	2
IAS	Belief and its Effects	2	0	2	ICS 102	Introduction to Computing I	2	3	3
PE	Health and Physical Educ. I	0	2	1	PE 102	Health and Physical Educ. II	0	2	1

Second Year (Sophomore)

CP	Planning Theory	3	0	3	CP	Land Use Planning	3	0	3
CP	Planning Laws and Legislation	3	0	3	CP	Urban Economics	3	0	3
CP	Intro. to Spatial Database Management Sys.	3	0	3	CP	GIS I	2	3	3
CE	Surveying I	1	3	2	CP	Planning Workshop I	1	9	4
STAT	Statistics for Business I	3	0	3	ENGL 214	Academic & Professional Comm.	3	0	3
IAS	Professional Ethics	2	0	2	IAS 322	Human Rights in Islam	2	0	2

Third Year (Junior)

CP	Urban Survey Methods	3	0	3	CP	Quant. Methods in Planning	3	0	3
CP	Intro. to Environmental Planning	2	0	2	CP	Transportation Planning	3	0	3
CP	GIS II	2	3	3	CP	Intro. to Cartography & Remote Sensing	2	3	3
CP	Planning Workshop II	1	9	4	CP	Planning Workshop III	1	9	4
ARC	Housing Policy and Design	2	0	2	IAS 322	Human Rights in Islam	2	0	2
IAS	Objective Writing	2	0	2	IAS 322	Human Rights in Islam	2	0	2

Fourth Year (Senior)

CP	Senior Planning Project Preparation	1	0	1	CP	Sustainable Development	2	0	2
CP	Planning Workshop IV	1	9	4	CP	Senior Planning Project	1	9	4
CP	CP Elective I	3	0	3	ARC 482	Socio-Cultural Factors in Design	2	0	2
CP	CP Elective II	3	0	3	XXX	Free Elective II	3	0	3

| Summer Session |
| CP | Summer Training | 0 | 0 | 0 |

Total credit hours in City Planning sequence: 186
Requirements for the B.S. Degree in City and Regional Planning
Option II: With Cooperative Work

Every student majoring in City and Regional Planning (Cooperative Work Option) must complete the following curriculum:

(a) General Education Requirements (38 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
</tr>
<tr>
<td>Architectural Graphics</td>
<td>ARC 100</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 131, 132</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>PHYS 133</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
</tr>
</tbody>
</table>

(b) Core Requirements (64 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to City Planning and Theory</td>
<td>CP 101, 201</td>
</tr>
<tr>
<td>Planning Workshops</td>
<td>CP 210, 310, 315</td>
</tr>
<tr>
<td>Analytical Methods</td>
<td>STAT 211, CP 301, 306</td>
</tr>
<tr>
<td>GIS and IT</td>
<td>ICS 102, CP 203, 206, 308</td>
</tr>
<tr>
<td>Socio-Economics</td>
<td>CP 205, ARC 482</td>
</tr>
<tr>
<td>Policies and Housing</td>
<td>CP 202, ARC 353</td>
</tr>
<tr>
<td>Land Use and Transportation</td>
<td>CP 204, 307</td>
</tr>
<tr>
<td>Environmental Plan. & Sustainable Development</td>
<td>CP 302, 402</td>
</tr>
<tr>
<td>Surveying and Remote Sensing</td>
<td>CE 261, CP 303</td>
</tr>
</tbody>
</table>

(c) Electives (14 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Electives</td>
<td>6 credit hours from: CP 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 490</td>
</tr>
<tr>
<td>Free Electives</td>
<td>6 credit hours of 300 or above courses from any other department</td>
</tr>
<tr>
<td>IAS Elective</td>
<td>IAS 4xx</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (9 credit hours)

Each student in this option must work for 28 weeks in a professional planning office and submit a formal written report.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>CP 351</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 125.
City Planning Curriculum – Cooperative Work Option

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC 100</td>
<td>Architectural Graphics</td>
<td>0</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 131</td>
<td>Finite Mathematics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 133</td>
<td>Principles of Physics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 201</td>
<td>Planning Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CP 202</td>
<td>Planning Laws and Legislation</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CP 203</td>
<td>Intro. to Spatial Database Management Sys.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CE 261</td>
<td>Surveying I</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Statistics for Business I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 301</td>
<td>Urban Survey Methods</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CP 302</td>
<td>Intro. to Environmental Planning</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CP 308</td>
<td>GIS II</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CP 310</td>
<td>Planning Workshop II</td>
<td>1</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>ARC 353</td>
<td>Housing Policy and Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>CP 402</td>
<td>Sustainable Development</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CP 4xx</td>
<td>CP Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CP 4xx</td>
<td>CP Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ARC 482</td>
<td>Socio-Cultural Factors in Design</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX xx</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>IAS 4xx</td>
<td>IAS Elective</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program : 125
COLLEGE OF INDUSTRIAL MANAGEMENT

Dean: Dr. Mohammed F. Al-Zahrani

UNDERGRADUATE DEPARTMENTS

ACCOUNTING and MANAGEMENT INFORMATION SYSTEMS
FINANCE and ECONOMICS
MANAGEMENT and MARKETING

UNDERGRADUATE PROGRAMS

B.S. in ACCOUNTING
B.S. in MANAGEMENT INFORMATION SYSTEMS
B.S. in FINANCE
B.S. in MANAGEMENT
B.S. in MARKETING
Established in 1975, the College of Industrial Management (CIM) offers undergraduate and graduate degree programs. It offers five undergraduate programs leading to the baccalaureate degrees in Accounting, Management Information Systems, Finance, Management, and Marketing. CIM programs are accredited by the AACSB International since 2002.

All programs are subjected to periodic reviews to assure currency and relevancy. The instruction language in all programs is English. All programs require students to spend 28 weeks of work in the industry to apply knowledge and gain valuable skills and competencies. All programs share common learning goals and in addition each program has learning goals specific to the discipline. CIM programs are delivered by qualified faculty members who were recruited from around the world. The College enjoys excellent facilities and learning support technologies. The College fosters mutually beneficial relations with the industry and with other universities.

Vision

To be among the best in the world as a center for excellence in management education, research, and community service that actively addresses the needs of stakeholders.

Mission

To be a prominent provider of management education through high quality teaching reinforced by experiential learning for students who will play significant and productive roles in the development of the Saudi economy within the global business environment.

To actively contribute to Saudi business, industry, and community through relevant high quality research, professional services, and dissemination of knowledge responsive to the evolving stakeholders’ needs.

Learning Goals

In addition to the learning goals specific to each major, all CIM programs have the following learning goals:

1. Communication Abilities: Ability to communicate business ideas effectively both orally and in writing
2. Team Work Skills: Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations
3. Reflective Thinking Skills: Ability to apply logic and exercise sound judgment in making decisions
4. Analytic/Quantitative Skills: Ability to understand, analyze and use quantitative data to make business decisions and/or solve business problems
5. Ethical Understanding: Ability to recognize, understand and evaluate ethical issues in business situations
6. Use of Information Technology: Ability to use information technology as a business enabler
7. Leadership: Ability to take initiative, show confidence and exercise leadership in business and professional organizations
8. Multicultural and diversity understanding: Awareness and understanding of cultural issues that impact business operations in a global society
9. General Business Knowledge: Ability to apply concepts and theories from business functional areas appropriately

Graduation Requirements

To graduate with a B.S. degree in the College of Industrial Management, the candidate must have

- completed a minimum of 127 credit hours,
- met the University requirement for cumulative and major GPA’s, and
- met other University requirements stated in this bulletin and in the regulations.
Department of Accounting and Management Information Systems

Chairman: Dr. Ahmed S. Alojairi

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel Halim</td>
<td>Al-Khaldi</td>
<td>Khan</td>
</tr>
<tr>
<td>Ahmed, F</td>
<td>Al-Mulhim</td>
<td>Kurdi</td>
</tr>
<tr>
<td>Ahmed, N</td>
<td>Al-Ojairi</td>
<td>Madani</td>
</tr>
<tr>
<td>Al-Ahmadi</td>
<td>Al-Wahaishi</td>
<td>Musabeh</td>
</tr>
<tr>
<td>Al-Bashrawi</td>
<td>Ba-Hamdan</td>
<td>Shawosh</td>
</tr>
<tr>
<td>Al-Harbi</td>
<td>Eid</td>
<td>Talet</td>
</tr>
<tr>
<td>Al-Hazmi</td>
<td>Fallatah</td>
<td>Talha</td>
</tr>
<tr>
<td>Al-Jabri</td>
<td>Islam</td>
<td>Qahwash</td>
</tr>
</tbody>
</table>
The Bachelor of Science in Accounting educates students to function effectively in a wide range of accounting careers in all types of economic organizations. The program is designed to prepare graduates for accounting careers in industry, public accounting, government, not-for-profit organizations or for an academic accounting career. The program stresses basic conceptual knowledge in all fields of business administration as an essential foundation for an effective accounting career. The program includes financial accounting, accounting information systems, cost accounting, managerial accounting, advanced accounting, auditing, accounting theory and research, as well as 28 weeks of practical training in accounting. The focus of the program is on the principles, concepts, and procedures of measuring, analyzing, and communicating economic information for decision making. The program keeps up with the most recent developments in the field of accounting. Significant emphasis is placed on computer applications in all areas of accounting. Ethical behavior is stressed throughout the program to highlight its importance to the maintenance of public trust in accounting and accounting professionals. Through a commitment to excellence, the program has remained a steady and very practical part of management education in the Kingdom of Saudi Arabia over the years.

Program Learning Goals and Objectives

Learning goals and objectives for the B.S. in Accounting program are shown below. Consistent with AACSB guidelines, the goals and objectives are classified into three categories: general education, management-specific (i.e. business-specific), and discipline-specific (i.e. accounting-specific) goals and objectives.

<table>
<thead>
<tr>
<th>Learning goal</th>
<th>Learning objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>College General Education Learning Goals and Objectives</td>
<td></td>
</tr>
<tr>
<td>1. Communication Abilities Ability to communicate business ideas effectively both orally and in writing</td>
<td>1. Students will be able to write reports that (a) are grammatically correct and (b) incorporate logical, complete, and articulate thoughts.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to make effective oral presentations on business topics. For example, they will (a) conduct themselves professionally, (b) speak clearly, (c) maintain eye contact with their audience, and (d) convey the main ideas.</td>
</tr>
<tr>
<td>2. Team Work Skills Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations</td>
<td>1. Students will be able to work effectively in group settings.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to lead group work.</td>
</tr>
<tr>
<td>3. Reflective Thinking Skills Ability to apply logic and exercise sound judgment in making decisions</td>
<td>Students will be able to show good judgment in making choices and decisions.</td>
</tr>
<tr>
<td>4. Analytic/Quantitative Skills Ability to understand, analyze and use quantitative data to make business decisions and/or solve business problems</td>
<td>1. Students will be able to identify quantitative characteristics of business problems.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to examine and interpret numeric business data.</td>
</tr>
<tr>
<td></td>
<td>3. Students will be able to analyze numeric business data to derive conclusions.</td>
</tr>
<tr>
<td>5. Ethical Understanding Ability to recognize, understand and</td>
<td>1. Students will be able to recognize and understand ethical issues in business situations.</td>
</tr>
<tr>
<td>College Management-Specific Learning Goals and Objectives</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9. General Business Knowledge</td>
<td></td>
</tr>
<tr>
<td>Ability to apply concepts and theories from business functional areas appropriately</td>
<td></td>
</tr>
<tr>
<td>1. Students will demonstrate knowledge of the functional areas of business and their inter-relationships.</td>
<td></td>
</tr>
<tr>
<td>2. Students will be able to integrate basic functional area competencies to critically evaluate information and make decisions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accounting Specific Learning Goals and Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Accounting Knowledge</td>
</tr>
<tr>
<td>Awareness and understanding of accounting principles, concepts, and theories</td>
</tr>
<tr>
<td>1. Students will be able to demonstrate knowledge and understanding of accounting standards, principles, concepts, and theories and their relevance to business situations.</td>
</tr>
<tr>
<td>2. Students will be able to understand the role of accounting and accountants in organizations and society.</td>
</tr>
<tr>
<td>3. Students will be able to demonstrate awareness and understanding of the challenges facing accounting and accountants in organizations and society.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Application of Accounting knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to apply accounting principles, concepts, theories and procedures to a variety of business situations</td>
</tr>
<tr>
<td>1. Students will be able to record, analyze and interpret financial and non-financial information.</td>
</tr>
<tr>
<td>2. Students will be able apply accounting principles, Standards and technologies to financial reporting and accounting practices.</td>
</tr>
<tr>
<td>3. Students will be able to apply management accounting</td>
</tr>
<tr>
<td>frameworks and techniques to planning, decision-making and financial control.</td>
</tr>
<tr>
<td>4. Students will be able to demonstrate awareness of international accounting issues, diversity and practices including roles and responsibilities played by accountants within a global context.</td>
</tr>
</tbody>
</table>
Requirements for the B.S. Degree in Accounting

Every student majoring in Accounting must complete the following curriculum:

(a) **General Education Requirements (43 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENG 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 131</td>
<td>11</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Science or Engineering Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(b) **Core Requirements in Business Administration (42 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Communications</td>
<td>MGT 210</td>
<td>3</td>
</tr>
<tr>
<td>Economics</td>
<td>ECON 101, 102, 206</td>
<td>9</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 301, 311, 412</td>
<td>9</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>MIS 215</td>
<td>3</td>
</tr>
<tr>
<td>Marketing</td>
<td>MKT 250</td>
<td>3</td>
</tr>
<tr>
<td>Operations Management</td>
<td>OM 210, 310</td>
<td>6</td>
</tr>
<tr>
<td>Statistics</td>
<td>STAT 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>College Business Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) **Accounting Major Requirements (36 credit hours)**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>ACCT 110, 210</td>
<td>6</td>
</tr>
<tr>
<td>Accounting Information Systems</td>
<td>ACCT 300</td>
<td>3</td>
</tr>
<tr>
<td>Finance</td>
<td>FIN 250</td>
<td>3</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 449</td>
<td>3</td>
</tr>
<tr>
<td>Intermediate Accounting I</td>
<td>ACCT 301</td>
<td>3</td>
</tr>
<tr>
<td>Intermediate Accounting II</td>
<td>ACCT 302</td>
<td>3</td>
</tr>
<tr>
<td>Auditing</td>
<td>ACCT 311</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Accounting</td>
<td>ACCT 403</td>
<td>3</td>
</tr>
<tr>
<td>Zakat and Business Tax Accounting</td>
<td>ACCT 408</td>
<td>3</td>
</tr>
<tr>
<td>Cost Accounting</td>
<td>ACCT 410</td>
<td>3</td>
</tr>
</tbody>
</table>

(d) **Cooperative Work (6 credit hours)**

Each student majoring in Accounting must participate in a structured 28-week cooperative work program.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>ACCT 351</td>
<td>6</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 127
Preparatory Year

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX</td>
<td>Science or Eng. Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 131</td>
<td>Finite Mathematics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 110</td>
<td>Intro. to Financial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS</td>
<td>xxx GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 210</td>
<td>Intro. to Managerial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECON 206</td>
<td>Economy of Saudi Arabia</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Statistics for Business I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 300</td>
<td>Accounting Information Systems</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 301</td>
<td>Intermediate Accounting I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OM 310</td>
<td>Quant. Methods for Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS</td>
<td>xxx GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MGT 301</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 127
B.S. Degree in Management Information Systems (MIS)

The MIS program is current and relevant; it has a structure that is academically sound and consists of an integrated body of knowledge, with a good balance between breadth and depth, theory and practice. The knowledge and skills will open up a broad range of career options to the graduates and will enhance the chances of securing lucrative employment within a short span of time. The program is designed to empower and equip graduates with:

a) A most up-to-date, comprehensive, well-founded set of technical knowledge and skills. – knowledge and skills that will not only open up a broad range of career options to them, but also enhance their chances of securing lucrative employment within a short span of time and help them make a smooth transition from student to professional life;

b) technical and managerial knowledge in business analysis, study of processes, re-engineering, simplification and re-design with the help of automation;

c) interpersonal, communication, analytical/reasoning, and problem-solving skills; - skills that are essential for success in their chosen careers, as well as in their future ability to make efficient and effective contributions to collaborative endeavors;

d) business application development techniques by using different methodologies, testing, implementation, project management, and post implementation review;

e) comprehensive study of system analysis and design, database development and management support systems and their applications to business problem solving;

f) knowledge to develop leaders who are confident of in themselves, are able to present and defend their ideas, enjoy team spirit, who are systematic, creative, and sensitive to both economic and non-economic factors, and who are ethical, and responsible in all their endeavors; and

g) a technical educational foundation that facilitates continuous learning and that will enable them to surmount the challenges they will encounter in managing information services later in their professional activities, and to sustain their technical strengths in their chosen careers.

Program Learning Goals and Objectives

<table>
<thead>
<tr>
<th>Learning goals</th>
<th>Learning objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Abilities</td>
<td>1. Students will be able to write reports that (a) are grammatically correct and (b) incorporate logical, complete, and articulate thoughts.</td>
</tr>
<tr>
<td>Ability to communicate business ideas effectively both orally and in writing</td>
<td>2. Students will be able to make effective oral presentations on business topics. For example, they will (a) conduct themselves professionally, (b) speak clearly, (c) maintain eye contact with their audience, and (d) convey the main ideas.</td>
</tr>
<tr>
<td>Team Work Skills</td>
<td>1. Students will be able to work effectively in group settings.</td>
</tr>
<tr>
<td>Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations</td>
<td>2. Students will be able to lead group work.</td>
</tr>
<tr>
<td>Reflective Thinking Skills</td>
<td>Students will be able to show good judgment in making</td>
</tr>
<tr>
<td>College Management-Specific Learning Goals and Objectives</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| 9. **General Business Knowledge**
Ability to apply concepts and theories from business functional areas appropriately | 1. Students will demonstrate knowledge of the functional areas of business and their inter-relationships.
2. Students will be able to integrate basic functional area competencies to critically evaluate information and make decisions. |
| **Discipline-Specific (MIS) Learning Goals and Objectives** |
| 10. **Systems analysis, design and project management concepts**
Design and implement information technology solutions that enhance | 1. Students will be able to analyze, design, implement, and maintain MIS applications.
2. Student will be able to plan, coordinate, monitor, and control MIS development projects. |
| 11. Role of MIS
Understand the MIS strategic role in integrating, supporting, and enabling organizational capabilities | 3. Student will be able to support business and MIS managers in their management activities and IT enabled decision making process.
4. Student will be able to evaluate strategic impact of MIS and emerging technologies and manage MIS resources.
5. Student will be able to apply MIS Ethical and societal issues. |
Requirements for the B.S. Degree in Management Information Systems

Every student majoring in MIS must complete the following curriculum:

<table>
<thead>
<tr>
<th>(a) General Education Requirements (43 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENG 214, IAS 101, 201, 301</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 131</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
</tr>
<tr>
<td>Science or Engineering Elective</td>
<td>XXX xxx</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Core Requirements in Business Administration (54 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>ACCT 110, 210</td>
</tr>
<tr>
<td>Business Communications</td>
<td>MGT 210</td>
</tr>
<tr>
<td>Economics</td>
<td>ECON 101, 102, 206</td>
</tr>
<tr>
<td>Finance</td>
<td>FIN 250</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 301, 311, 412, 449</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>MIS 215</td>
</tr>
<tr>
<td>Marketing</td>
<td>MKT 250</td>
</tr>
<tr>
<td>Operations Management</td>
<td>OM 210, 310</td>
</tr>
<tr>
<td>Statistics</td>
<td>STAT 211, 212</td>
</tr>
<tr>
<td>College Business Elective</td>
<td>XXX xxx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) MIS Major Requirements (24 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computing I</td>
<td>ICS 102</td>
</tr>
<tr>
<td>Business Systems Analysis & Design</td>
<td>MIS 301</td>
</tr>
<tr>
<td>Business Data Management</td>
<td>MIS 311</td>
</tr>
<tr>
<td>Fundamentals of Computer Comm.</td>
<td>COE 353</td>
</tr>
<tr>
<td>IS Project Management</td>
<td>MIS 405</td>
</tr>
<tr>
<td>Management Support Systems</td>
<td>MIS 410</td>
</tr>
<tr>
<td>Information Resources Management</td>
<td>MIS 490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) Cooperative Work (6 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>MIS 351</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **127**
<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 110</td>
<td>Intro. to Financial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ICS 102</td>
<td>Intro. to Computing I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>5</td>
<td>19</td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Science or Eng. Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 211</td>
<td>Statistics for Business I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FIN 250</td>
<td>Financial Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MIS 215</td>
<td>Principles of MIS</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>College Business Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MGT 301</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>COE 353</td>
<td>Fundamentals of Computer Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MIS 301</td>
<td>Business Systems Analysis & Design</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MGT 449</td>
<td>Strategic Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Major Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MGT 412</td>
<td>Entrepreneurship and Small Business Mgt.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MIS 410</td>
<td>Management Support Systems</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MIS 490</td>
<td>Information Resources Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 127
Department of Finance and Economics

Chairman: Dr. Hesham Merdad

Faculty

<table>
<thead>
<tr>
<th>Aghdam</th>
<th>Al-Naeem</th>
<th>Merdad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Abandi</td>
<td>Al-Sahlawi, A</td>
<td>Miah</td>
</tr>
<tr>
<td>Albinaly</td>
<td>Al-Sahlawi, M</td>
<td>Ramady</td>
</tr>
<tr>
<td>Al-Elg</td>
<td>Al-Sakran</td>
<td>Ulussever</td>
</tr>
<tr>
<td>Al-Gahtani</td>
<td>Al-Subaie</td>
<td>Uthman</td>
</tr>
<tr>
<td>Al-Hejji</td>
<td>Al-Yousef</td>
<td></td>
</tr>
<tr>
<td>Almansur</td>
<td>Al-Zahrani</td>
<td></td>
</tr>
</tbody>
</table>
The field of finance deals with the acquisition and efficient allocation of financial resources by business firms, governments, and individuals. The Bachelor of Science in Finance is designed to develop an understanding of financial markets and institutions, and to provide students with both the theoretical background in finance and the analytical tools required to make intelligent financial decisions. The finance curriculum prepares students for careers in corporate financial management, commercial and investment banking, investments, capital markets, and financial services.

Program Learning Goals and Objectives

Learning goals and objectives for the B.S. in finance program are shown below. Consistent with AACSB guidelines, the goals and objectives are classified into three categories: general education, management-specific (i.e. business-specific), and discipline-specific (i.e. finance-specific) goals and objectives.

<table>
<thead>
<tr>
<th>Learning goal</th>
<th>Learning objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>College General Education Learning Goals/Objectives</td>
<td></td>
</tr>
<tr>
<td>1. Communication Abilities
Ability to communicate business ideas effectively both orally and in writing</td>
<td>1. Students will be able to write reports that (a) are grammatically correct and (b) incorporate logical, complete, and articulate thoughts.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to make effective oral presentations on business topics. For example, they will (a) conduct themselves professionally, (b) speak clearly, (c) maintain eye contact with their audience, and (d) convey the main ideas.</td>
</tr>
<tr>
<td>2. Team Work Skills
Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations</td>
<td>1. Students will be able to work effectively in group settings.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to lead group work.</td>
</tr>
<tr>
<td>3. Reflective Thinking Skills
Ability to apply logic and exercise sound judgment in making decisions</td>
<td>Students will be able to show good judgment in making choices and decisions.</td>
</tr>
<tr>
<td>4. Analytic/Quantitative Skills
Ability to understand, analyze and use quantitative data to make business decisions and/or solve business problems</td>
<td>1. Students will be able to identify quantitative characteristics of business problems.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to examine and interpret numeric business data.</td>
</tr>
<tr>
<td></td>
<td>3. Students will be able to analyze numeric business data to derive conclusions.</td>
</tr>
<tr>
<td>5. Ethical Understanding
Ability to recognize, understand and evaluate ethical issues in business situations</td>
<td>1. Students will be able to recognize and understand ethical issues in business situations.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to evaluate ethical issues presented to them and to make responsible choices and/or decisions.</td>
</tr>
<tr>
<td>6. Use of Information Technology
Ability to use information technology as a business enabler</td>
<td>1. Students will be able to use basic IT software tools, such as spreadsheets, database management, and presentation software.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to use software tools to solve accounting, financial and quantitative problems.</td>
</tr>
</tbody>
</table>
3. Students will be able to use software tools to meaningfully select, manipulate and process data to make business decisions.

4. Students will be able to use information technology (e.g. research databases and/or the Internet) to obtain information.

7. Leadership
Ability to take initiative, show confidence and exercise leadership in business and professional organizations

Students will be able to demonstrate that they are proactive, have confidence, and have potential for leadership in their coop experience and the capstone courses.

8. Multicultural and diversity understanding
Awareness and understanding of cultural issues that impact business operations in a global society

Students will be able to deal effectively with people from diverse social, economic, and religious backgrounds.

9. Management-Specific Knowledge
Ability to apply functional area concepts and theories appropriately

1. Students will demonstrate knowledge of the functional areas of business and their inter-relationships.

2. Students will be able to integrate basic functional area competencies to critically evaluate information and make decisions.

Finance Major Learning Goals/Objectives

10. Discipline-Specific Knowledge
Awareness and understanding of finance and economic concepts, principles and theories. Learning objectives are numbered OB1 to OB4.

1. Understanding of fundamental economic concepts and familiarity with the role and working of financial markets and institutions, including exposure to the Saudi economy and its institutional arrangements,

2. Become familiar with the major analytical tools of corporate financial performance evaluation, capital budgeting, and estimation of cost of capital.

3. Understanding of risk-return concepts within the context of modern portfolio theory. Gain familiarity with investment practices with a global perspective.

4. Ability to integrate financial and economic concepts and techniques to diagnose business problems and propose solutions, and to show an appreciation for ethical values in making decisions.
Requirements for the B.S. Degree in Finance

Every student majoring in Finance must complete the following curriculum:

<table>
<thead>
<tr>
<th>(a) General Education Requirements (43 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills ENG 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics MATH 101, 102, 131</td>
<td>11</td>
</tr>
<tr>
<td>Physical Education PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Science or Engineering Elective XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies Two GS xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Core Requirements in Business Administration (39 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Communications MGT 210</td>
<td>3</td>
</tr>
<tr>
<td>Economics ECON 206</td>
<td>3</td>
</tr>
<tr>
<td>Management MGT 301, 311, 412, 449</td>
<td>12</td>
</tr>
<tr>
<td>Management Information Systems MIS 215</td>
<td>3</td>
</tr>
<tr>
<td>Marketing MKT 250</td>
<td>3</td>
</tr>
<tr>
<td>Operations Management OM 210, 310</td>
<td>6</td>
</tr>
<tr>
<td>Statistics STAT 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>College Business Elective XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c) Finance Major Requirements (39 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting ACCT 110, 210</td>
<td>6</td>
</tr>
<tr>
<td>Economics ECON 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Finance FIN 250</td>
<td>3</td>
</tr>
<tr>
<td>Intermediate Financial Management FIN 310</td>
<td>3</td>
</tr>
<tr>
<td>Investments FIN 320</td>
<td>3</td>
</tr>
<tr>
<td>Financial Modeling FIN 425</td>
<td>3</td>
</tr>
<tr>
<td>Financial Policy FIN 450</td>
<td>3</td>
</tr>
<tr>
<td>Any three courses of: ACCT 301, FIN 410, 415, 421, 430, 435, 440, 460, 470, 480</td>
<td>9</td>
</tr>
<tr>
<td>Major Elective, Any course of: ECON 301, 302, 305, 330, 401, 410, 415, 420, 425, 525</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d) Cooperative Work (6 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work FIN 351</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **127**
Finance Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td>ECON 102</td>
<td>Principles of Economics II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>ECON 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>MIS 215</td>
<td>Principles of MIS</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>ACCT 101</td>
<td>Principles of Managerial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td>First Year (Freshman)</td>
<td></td>
<td>18</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program: 31</td>
<td></td>
<td></td>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and it Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MGT 301</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 110</td>
<td>Intro. to Financial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 102</td>
<td>Intro. to Managerial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>FIN 250</td>
<td>Financial Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>STAT 211</td>
<td>Statistics for Business I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program: 180</td>
<td></td>
<td></td>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MGT 311</td>
<td>Legal Environment</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECON 206</td>
<td>Economy of Saudi Arabia</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>FIN 425</td>
<td>Financial Modeling</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>FIN 320</td>
<td>Investments</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>FIN 310</td>
<td>Intermediate Financial Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MGT 412</td>
<td>Entrepreneurship and Small Business Mgt.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>OM 310</td>
<td>Quant. Methods for Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>18</td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
<td>Fourth Year (Senior)</td>
<td></td>
<td>17</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>FIN 351</td>
<td>Cooperative Work</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>FIN 450</td>
<td>Financial Policy</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>XXX xxx</td>
<td>ACCT/FIN Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FIN 449</td>
<td>Strategic Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program: 127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Department of Management and Marketing

Chairman: Dr. Aymen A. Kayal

<table>
<thead>
<tr>
<th>Faculty</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Ashban</td>
<td>Al-Shuridah</td>
<td>Mansour</td>
<td></td>
</tr>
<tr>
<td>Al-Faraj</td>
<td>Alwuhaibi</td>
<td>Matzin</td>
<td></td>
</tr>
<tr>
<td>Al-Ghamdi</td>
<td>Eltayeb</td>
<td>Mohamed</td>
<td></td>
</tr>
<tr>
<td>Alkahtany</td>
<td>Frimpong</td>
<td>Oukil</td>
<td></td>
</tr>
<tr>
<td>Al-Khars</td>
<td>Heineck</td>
<td>Qazi</td>
<td></td>
</tr>
<tr>
<td>Al-Meer</td>
<td>Joyner</td>
<td>Sadi</td>
<td></td>
</tr>
<tr>
<td>Al-Qahtani, H</td>
<td>Kazmi</td>
<td>Shareef</td>
<td></td>
</tr>
<tr>
<td>Al-Qahtani, N</td>
<td>Kayal</td>
<td>Sohail</td>
<td></td>
</tr>
<tr>
<td>Al-Shammari</td>
<td>Maghrabi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alshebil</td>
<td>Mahdi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.S. Degree in Management

Management is a fundamental human activity, and one of the key functions of any business organization. It is the function through which businesses anticipate, create, and communicate value to and manage relationships with stakeholders. The Management program at CIM is designed for students who wish to pursue a wide variety of careers in business organizations.

The Management program prepares students to assume leadership roles in business and other types of institutions. The program is designed to develop the student’s ability to think objectively and make sound decisions. This program will teach the student how to become effective as a person and as a managerial leader.

The Management program includes Management of Human Resources, Supply Chain Management, International Business, Cost Accounting, Financial Management, Management Information Systems, Organizational Behavior, Marketing Research, and courses in Quantitative Methods and Research, as well as 28 weeks of practical experience in business organizations. The program keeps up with the most recent developments in the field of management. It places sufficient emphasis on computer applications and quantitative methods. The B.S. in Management program has been offered in CIM for close to 20 years now, and has graduated many students who are now playing significant roles in the management functions of their organizations.

Program Learning Goals and Objectives

Learning goals and objectives for the B.S. in management program are shown below. Consistent with AACSB guidelines, the goals and objectives are classified into three categories: general education, management-specific (i.e. business-specific), and discipline-specific (i.e. management-specific) goals and objectives.

<table>
<thead>
<tr>
<th>Learning goal</th>
<th>Learning objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>College General Education Learning Goals/Objectives</td>
<td></td>
</tr>
<tr>
<td>1. Communication Abilities</td>
<td>1. Students will be able to write reports that (a) are grammatically correct and (b) incorporate logical, complete, and articulate thoughts.</td>
</tr>
<tr>
<td>Ability to communicate business ideas effectively both orally and in writing</td>
<td>2. Students will be able to make effective oral presentations on business topics. For example, they will (a) conduct themselves professionally, (b) speak clearly, (c) maintain eye contact with their audience, and (d) convey the main ideas.</td>
</tr>
<tr>
<td>2. Team Work Skills</td>
<td>1. Students will be able to work effectively in group settings.</td>
</tr>
<tr>
<td>Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations</td>
<td>2. Students will be able to lead group work.</td>
</tr>
<tr>
<td>3. Reflective Thinking Skills</td>
<td>Students will be able to show good judgment in making choices and decisions.</td>
</tr>
<tr>
<td>Ability to apply logic and exercise sound judgment in making decisions</td>
<td></td>
</tr>
<tr>
<td>4. Analytic/Quantitative Skills</td>
<td>1. Students will be able to identify quantitative characteristics of business problems.</td>
</tr>
<tr>
<td>Ability to understand, analyze and use quantitative data to make business</td>
<td>2. Students will be able to examine and interpret numeric</td>
</tr>
<tr>
<td>Decision and/or solve business problems</td>
<td>Business data.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>3. Students will be able to analyze numeric business data to derive conclusions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Ethical Understanding</th>
<th>Ability to recognize, understand and evaluate ethical issues in business situations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will be able to recognize and understand ethical issues in business situations</td>
<td></td>
</tr>
<tr>
<td>2. Students will be able to evaluate ethical issues presented to them and to make responsible choices and/or decisions.</td>
<td></td>
</tr>
<tr>
<td>6. Use of Information Technology</td>
<td>Ability to use information technology as a business enabler</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1. Students will be able to use basic IT software tools, such as spreadsheets, database management, and presentation software.</td>
<td></td>
</tr>
<tr>
<td>2. Students will be able to use software tools to solve accounting, financial and quantitative problems</td>
<td></td>
</tr>
<tr>
<td>3. Students will be able to use software tools to meaningfully select, manipulate and process data to make business decisions.</td>
<td></td>
</tr>
<tr>
<td>4. Students will be able to use information technology (e.g. research databases and/or the Internet) to obtain information.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Leadership</th>
<th>Ability to take initiative, show confidence and exercise leadership in business and professional organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to demonstrate that they are proactive, have confidence, and have potential for leadership in their coop experience and the capstone courses.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Multicultural and diversity understanding</th>
<th>Awareness and understanding of cultural issues that impact business operations in a global society</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be able to deal effectively with people from diverse social, economic, and religious backgrounds.</td>
<td></td>
</tr>
</tbody>
</table>

College Management-Specific Learning Goals and Objectives

<table>
<thead>
<tr>
<th>9. Management-Specific Knowledge</th>
<th>Ability to apply functional area concepts and theories appropriately</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will demonstrate knowledge of the functional areas of business and their inter-relationships.</td>
<td></td>
</tr>
<tr>
<td>2. Students will be able to integrate basic functional area competencies to critically evaluate information and make decisions.</td>
<td></td>
</tr>
</tbody>
</table>

Management Major Learning Goals/Objectives

<table>
<thead>
<tr>
<th>10. Discipline-Specific Knowledge</th>
<th>Awareness and understanding of management concepts, principles and theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will be able to demonstrate a thorough understanding of the role of management in organizations and society at large.</td>
<td></td>
</tr>
<tr>
<td>2. Students will be able to demonstrate a good understanding of the principles and theories underlying modern management thinking and practice.</td>
<td></td>
</tr>
<tr>
<td>3. Students will be able to demonstrate awareness of the responsibilities and challenges facing management in organizations and society at large</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Application of Discipline-Specific Knowledge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will be able to apply the management process of planning, organizing, leading, and controlling.</td>
<td></td>
</tr>
</tbody>
</table>
| Ability to apply management area concepts, principles and theories appropriately | 2. Students will be able to draw appropriate implementation plans for the strategies.
3. Students will be able to design and conduct basic-level management-related research studies, or evaluate and use third-party business research studies for effective managerial decision making. |
Requirements for the B.S. Degree in Management

Every student majoring in Management must complete the following curriculum:

(a) General Education Requirements (43 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENG 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 131</td>
<td>11</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Science or Engineering Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(b) Core Requirements in Business Administration (42 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>ACCT 110, 210</td>
<td>6</td>
</tr>
<tr>
<td>Business Communications</td>
<td>MGT 210</td>
<td>3</td>
</tr>
<tr>
<td>Economics</td>
<td>ECON 101, 102, 206</td>
<td>9</td>
</tr>
<tr>
<td>Finance</td>
<td>FIN 250</td>
<td>3</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 311</td>
<td>3</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>MIS 215</td>
<td>3</td>
</tr>
<tr>
<td>Operations Management</td>
<td>OM 210, 310</td>
<td>6</td>
</tr>
<tr>
<td>Statistics</td>
<td>STAT 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>College Business Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) Management Major Requirements (36 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>MGT 301, 310, 312, 440, 449, 450</td>
<td>18</td>
</tr>
<tr>
<td>Marketing</td>
<td>MKT 250, 345</td>
<td>6</td>
</tr>
<tr>
<td>Operations Management</td>
<td>OM 320</td>
<td>3</td>
</tr>
<tr>
<td>Human Resources Management</td>
<td>HRM 301</td>
<td>3</td>
</tr>
<tr>
<td>Major Electives, Any two courses of:</td>
<td>HRM 390, 401, 402, 403, 411, MGT 312, 413, 430</td>
<td>6</td>
</tr>
</tbody>
</table>

(d) Cooperative Work (6 credit hours)

Each student majoring in Management must participate in a structured 28-week cooperative work program.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperative Work</td>
<td>MGT 351</td>
<td>6</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 127
Management Curriculum

<table>
<thead>
<tr>
<th>Preparatory Year</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15 5 4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15 5 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3 1 4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3 1 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2 0 2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0 2 1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0 2 1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20 10 16</td>
<td></td>
<td>Total credit hours required in Preparatory Program:</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year (Freshman)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3 0 3</td>
<td>ACCT 110</td>
<td>Introduction to Financial Accounting</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3 0 3</td>
<td>ECON 102</td>
<td>Principles of Economics II</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4 0 4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2 0 2</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4 0 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2 0 2</td>
<td>MATH 131</td>
<td>Finite Mathematics</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0 2 1</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective I</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17 2 18</td>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year (Sophomore)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 210</td>
<td>Introduction to Managerial Accounting</td>
<td>3 0 3</td>
<td>MGT 301</td>
<td>Principles of Management</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIS 215</td>
<td>Principles of MIS</td>
<td>3 0 3</td>
<td>MGT 210</td>
<td>Business Comm.</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic and Professional Comm.</td>
<td>3 0 3</td>
<td>OM 210</td>
<td>Operations Management</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2 0 2</td>
<td>STAT 212</td>
<td>Statistics for Business II</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 211</td>
<td>Statistics for Business I</td>
<td>3 0 3</td>
<td>MKT 250</td>
<td>Principles of Marketing</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective II</td>
<td>3 0 3</td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>17 2 18</td>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year (Junior)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRM 301</td>
<td>Human Resources Management</td>
<td>3 0 3</td>
<td>MKT 345</td>
<td>Marketing Research</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 310</td>
<td>Organization Behavior</td>
<td>3 0 3</td>
<td>XXX xxx</td>
<td>Science or Eng. Elective</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 206</td>
<td>Economy of Saudi Arabia</td>
<td>3 0 3</td>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2 0 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGT 311</td>
<td>Legal Environment</td>
<td>3 0 3</td>
<td>OM 320</td>
<td>Intro. to Supply Chain Management</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIN 250</td>
<td>Financial Management</td>
<td>3 0 3</td>
<td>OM 310</td>
<td>Quant. Methods for Management</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXX xxx</td>
<td>College Business Elective</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>15 0 15</td>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>17 0 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year (Senior)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 351</td>
<td>Cooperative Work</td>
<td>0 0 6</td>
<td>MGT 412</td>
<td>Entrepreneurship and Small Business Mgt.</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGT 440</td>
<td>International Business</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGT 449</td>
<td>Strategic Management</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MGT 450</td>
<td>Management of Innovation and Change</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXX xxx</td>
<td>MGT/HRM elective I</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXX xxx</td>
<td>MGT/HRM elective II</td>
<td>3 0 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18 0 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 127
B.S. Degree in Marketing

Marketing is a fundamental human activity. Businesses and noncommercial institutions attempt to anticipate, manage and satisfy demands for goods and services. To do this, marketers must adequately conceive, promote, price, and distribute such goods and services. Marketing is an appropriate field of study for individuals who are interested in discovering consumer needs, satisfying these needs, and communicating benefits to a target group of customers.

The broad objective of the B.S. in marketing program is to equip students with relevant knowledge and skills to enable them to function effectively in marketing-related positions in a variety of contexts. This program stresses basic conceptual knowledge in all fields of industrial management as an essential foundation for an effective Marketing career.

The Marketing program is designed for students who wish to pursue careers as marketing managers or directors, sales managers, marketing research coordinators, advertising directors, product development specialists, distribution managers, sales executives, market analysts, retail merchandising specialists, brand or product managers, or export directors.

The Marketing program includes courses in marketing research, product and brand management, integrated marketing communications, marketing channels, international marketing, strategic marketing, and a marketing elective course, as well as 28 weeks of practical experience in marketing. The program focuses on the principles, concepts, and procedures needed for measuring and analyzing marketing information for effective decision-making and for implementing and controlling marketing plans for efficient market penetration. Even though the program is designed to meet the local marketing environment requirements, it also keeps up with the most recent developments in the field of marketing.

Program Learning Goals and Objectives

Learning goals and objectives for the B.S. in marketing program are shown below. Consistent with AACSB guidelines, the goals and objectives are classified into three categories: general education, management-specific (i.e. business-specific), and discipline-specific (i.e. marketing-specific) goals and objectives.

<table>
<thead>
<tr>
<th>Learning goal</th>
<th>Learning objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>College General Education Learning Goals and Objectives</td>
<td></td>
</tr>
<tr>
<td>1. Communication Abilities
Ability to communicate business ideas effectively both orally and in writing</td>
<td>1. Students will be able to write reports that (a) are grammatically correct and (b) incorporate logical, complete, and articulate thoughts.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to make effective oral presentations on business topics. For example, they will (a) conduct themselves professionally, (b) speak clearly, (c) maintain eye contact with their audience, and (d) convey the main ideas.</td>
</tr>
<tr>
<td>2. Team Work Skills
Ability to function effectively as a member or leader of a team in performing group tasks in business and professional organizations</td>
<td>1. Students will be able to work effectively in group settings.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to lead group work.</td>
</tr>
<tr>
<td></td>
<td>Reflective Thinking Skills</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Ability to apply logic and exercise sound judgment in making decisions</td>
</tr>
<tr>
<td>3. Reflective Thinking Skills</td>
<td>1. Students will be able to identify quantitative characteristics of business problems.</td>
</tr>
<tr>
<td></td>
<td>Ability to understand, analyze and use quantitative data to make business decisions and/or solve business problems</td>
</tr>
<tr>
<td>4. Analytic/Quantitative Skills</td>
<td>2. Students will be able to examine and interpret numeric business data.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ethical Understanding</td>
<td>1. Students will be able to recognize and understand ethical issues in business situations.</td>
</tr>
<tr>
<td></td>
<td>Ability to recognize, understand and evaluate ethical issues in business situations</td>
</tr>
<tr>
<td>6. Use of Information Technology</td>
<td>2. Students will be able to evaluate ethical issues presented to them and to make responsible choices and/or decisions.</td>
</tr>
<tr>
<td></td>
<td>Ability to use information technology as a business enabler</td>
</tr>
<tr>
<td></td>
<td>1. Students will be able to use use basic IT software tools, such as spreadsheets, database management, and presentation software.</td>
</tr>
<tr>
<td></td>
<td>2. Students will be able to use software tools to solve accounting, financial and quantitative problems.</td>
</tr>
<tr>
<td></td>
<td>3. Students will be able to use software tools to meaningfully select, manipulate and process data to make business decisions.</td>
</tr>
<tr>
<td></td>
<td>4. Students will be able to use information technology (e.g. research databases and/or the Internet) to obtain information.</td>
</tr>
<tr>
<td></td>
<td>Students will be able to demonstrate that they are proactive, have confidence, and have potential for leadership in their coop experience and the capstone courses.</td>
</tr>
<tr>
<td>7. Leadership</td>
<td>Students will be able to deal effectively with people from diverse social, economic, and religious backgrounds.</td>
</tr>
<tr>
<td></td>
<td>Ability to take initiative, show confidence and exercise leadership in business and professional organizations</td>
</tr>
<tr>
<td>8. Multicultural and diversity understanding</td>
<td>Students will be able to demonstrate knowledge of the functional areas of business and their inter-relationships.</td>
</tr>
<tr>
<td></td>
<td>Awareness and understanding of cultural issues that impact business operations in a global society</td>
</tr>
<tr>
<td>9. General Business Knowledge</td>
<td>2. Students will be able to integrate basic functional area competencies to critically evaluate information and make decisions.</td>
</tr>
<tr>
<td></td>
<td>Ability to apply concepts and theories from business functional areas appropriately</td>
</tr>
<tr>
<td>College Management-Specific Learning Goals and Objectives</td>
<td>Students will be able to demonstrate a thorough understanding of the role of marketing in an organization and society at large.</td>
</tr>
<tr>
<td>10. Marketing Knowledge</td>
<td>Students will be able to demonstrate a good understanding of the principles and theories of modern marketing thinking and practice.</td>
</tr>
<tr>
<td></td>
<td>Awareness and understanding of marketing concepts, principles and theories</td>
</tr>
<tr>
<td>3.</td>
<td>Students will be able to demonstrate awareness of responsibilities and challenges facing marketing in the organization and society at large.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **11. Application of Marketing Knowledge**
Ability to apply marketing area concepts, principles and theories appropriately | **1.** Students will be able to design marketing strategies for organizations and draw appropriate implementation plans for the strategies.
2. Students will be able to design and conduct basic-level marketing research studies, or evaluate and use third-party market research studies for effective marketing decision making. |
Requirements for the B.S. Degree in Marketing

Every student majoring in Marketing must complete the following curriculum:

(a) **General Education Requirements (43 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENG 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 131</td>
<td>11</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Science or Engineering Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
</tbody>
</table>

(b) **Core Requirements in Business Administration (42 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>ACCT 110, 210</td>
<td>6</td>
</tr>
<tr>
<td>Business Communications</td>
<td>MGT 210</td>
<td>3</td>
</tr>
<tr>
<td>Economics</td>
<td>ECON 101, 102, 206</td>
<td>9</td>
</tr>
<tr>
<td>Finance</td>
<td>FIN 250</td>
<td>3</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 311</td>
<td>3</td>
</tr>
<tr>
<td>Management Information Systems</td>
<td>MIS 215</td>
<td>3</td>
</tr>
<tr>
<td>Operations Management</td>
<td>OM 210, 310</td>
<td>6</td>
</tr>
<tr>
<td>Statistics</td>
<td>STAT 211, 212</td>
<td>6</td>
</tr>
<tr>
<td>College Business Elective</td>
<td>XXX xxx</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) **Marketing Major Requirements (36 credit hours)**

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>MGT 301, 412, 449</td>
<td>9</td>
</tr>
<tr>
<td>Marketing</td>
<td>MKT 250</td>
<td>3</td>
</tr>
<tr>
<td>Consumer Behavior</td>
<td>MKT 410</td>
<td>3</td>
</tr>
<tr>
<td>Marketing Research</td>
<td>MKT 345</td>
<td>3</td>
</tr>
<tr>
<td>Product & Brand Management</td>
<td>MKT 360</td>
<td>3</td>
</tr>
<tr>
<td>Integrated Marketing Communications</td>
<td>MKT 370</td>
<td>3</td>
</tr>
<tr>
<td>Marketing Channels</td>
<td>MKT 380</td>
<td>3</td>
</tr>
<tr>
<td>International Marketing</td>
<td>MKT 420</td>
<td>3</td>
</tr>
<tr>
<td>Strategic Marketing</td>
<td>MKT 450</td>
<td>3</td>
</tr>
<tr>
<td>Major Elective, One course of:</td>
<td>MKT 430, 440, 460, 470, 480, 490, 495</td>
<td>3</td>
</tr>
</tbody>
</table>

(d) **Cooperative Work (6 credit hours)**

Each student majoring in Marketing must participate in a structured 28-week cooperative work program.

Cooperative Work | MKT 351 | 6

The total number of credit hours required is **127**.
Marketing Curriculum

Preparatory Year

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 101</td>
<td>Principles of Economics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX</td>
<td>Science or Eng. Elective</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

15 2 16

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 110</td>
<td>Intro. to Financial Accounting</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 102</td>
<td>Calculus II</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 131</td>
<td>Finite Mathematics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

17 2 16

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 206</td>
<td>Economy of Saudi Arabia</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GS 321</td>
<td>GS Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MKT 360</td>
<td>Product & Brand Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MKT 345</td>
<td>Marketing Research</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MGT 311</td>
<td>Legal Environment</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>LanguageComm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

17 0 17

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKT 350</td>
<td>Begin Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKT 351</td>
<td>Cooperative Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MKT 420</td>
<td>International Marketing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MKT 450</td>
<td>Strategic Marketing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MGT 412</td>
<td>Entrepreneurship and Small Bus Mgt.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MGT 449</td>
<td>Strategic Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MKT 4xx</td>
<td>Major Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 127
COLLEGE OF PETROLEUM ENGINEERING & GEOSCIENCES

Dean: Dr. Abdulaziz O. Al-Kaabi

UNDERGRADUATE DEPARTMENTS

GEOSCIENCES
PETROLEUM ENGINEERING
CENTER FOR INTEGRATIVE PETROLEUM RESEARCH
Vision of the College

To be a global leader in the integration of undergraduate and graduate education with both basic and applied research relevant to discovery and recovery of hydrocarbon resources with minimum impact on the environment.

Mission

- Assure that undergraduate and graduate programs of the College keep pace with the inexorable increase both in the basic sciences underlying our understanding of petroleum engineering and geosciences, and in technological sophistication of exploration and production of oil and gas.

- To prepare graduates of the College at all levels to contribute to humankind’s knowledge of discovery and recovery, to contribute to technology-based company or government missions, and to educate and mentor those students who have the ability to solve the difficult technical, industrial, and civic problems of tomorrow.

- Help secure the economic future of Saudi Arabia and world by increasing the role of the world’s largest oil-producing country as a generator of new science, new technology, and tech-based start-up companies of direct relevance to the growth and development of the oil and gas industries.

Philosophy

The College of Petroleum Engineering & Geosciences (CPG) integrates three units that already exist at KFUPM: the Department of Petroleum Engineering, the Department of Earth Sciences, and the Center for Petroleum and Minerals. The three units were formally under College of Engineering Sciences, College of Sciences and KFUPM Research Institute, respectively. The driver for this initiative is to substantially leverage the educational and research capacity of KFUPM, to contribute to industry-relevant research and to develop industry-ready talent across a wide spectrum.

CPG is an integral part of KFUPM but with features that distinguish it markedly from other KFUPM Colleges:

- The Center for Integrative Petroleum Research (CIPR): This Center is the home for the College’s academic research enterprise, supporting curiosity-driven research, as well as performing challenge-driven contract research for both government and industry. A substantial increase in College-based research activity will support a rapid increase in enrollment in research-oriented doctoral programs over the next decade. The CIPR will establish a strong presence in the Dhahran Techno Valley, DTV, and this will open the opportunity for additional engagement between DTV industrial partners and CPG in research and education.

- High level of industry engagement: The College will leverage, and expand on, KFUPM’s long history of close engagement with industry in DTV, in the Kingdom, and worldwide. The new College, and particularly the CIPR, includes programs to
draw industry interns, visiting industry executives, and visiting industry researchers and practitioners to the College to contribute to, and learn from, the College and its research activities.

- Integrated, collaborative curriculum: A critical role of the College is to form talented undergraduate and graduate students into petroleum professionals characterized by the highest standards of technical expertise, innovation and teamwork. Over the course of the early years of the College, the classroom, laboratory, and experiential aspects of the core curricula will be revised to provide world-class interdisciplinary and integrative degree programs for students matriculating through the college.

College Programs

The undergraduate programs of the College of Petroleum Engineering & Geosciences provide students with a range of educational opportunities by which they will achieve competence in major branches of petroleum engineering and geosciences. A key parameter of the curriculum at CPG is the fact that the undergraduate educational experience is an integrated one, in that all students take courses in petroleum engineering and geosciences, regardless of their ultimate major. Equipped in this way with the knowledge of mathematics, geology, geophysics, petroleum engineering, computational techniques, and statistical analysis of data, the CPG graduate can engage in creative design and construction, synthesis of systems, and in research and development. Thus, the CPG graduate are well equipped to seek jobs in a range of professions, in either industry or academia. The College of Petroleum Engineering and Geosciences continues to provide flexibility in different programs through a spectrum of electives, which allows the graduate to exercise a limited choice in tailoring his program to fit his personal goals, whether for immediate employment or for graduate work.

All programs of the College of Petroleum Engineering and Geosciences met the Accreditation Criteria of the Board for Engineering and Technology (ABET) and National Commission for Academic Accreditation & Assessment (NCAAA).

Programs offered in the College

1. Petroleum Engineering (BS, MS, and PhD)
2. Geology (BS, MS, and PhD)
3. Geophysics (BS, MS)
4. Environmental Science (MS)

Graduation Requirements

In order to qualify for graduation in Petroleum Engineering and Geosciences students must:

1. Complete all required and elective courses in the selected degree program with a cumulative GPA of 2.00 or better;
2. Achieve a major GPA of 2.00 or better;
3. After the third year, successfully complete an 8-week program working in industry.
Department of Geosciences

Chairman: Dr. Abdulaziz M. Al-Shaibani

Faculty

<table>
<thead>
<tr>
<th>Abdulghani</th>
<th>Alshuhail</th>
<th>Kaminski</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdullatif</td>
<td>Al-Shuhail</td>
<td>Korvin</td>
</tr>
<tr>
<td>Abokhodair</td>
<td>Dogan</td>
<td>Makkawi</td>
</tr>
<tr>
<td>Al-Lehyani</td>
<td>Hariri</td>
<td>Qurban</td>
</tr>
<tr>
<td>Alramadan</td>
<td>Hughes</td>
<td>Tawabini</td>
</tr>
<tr>
<td>Al-Shaibani</td>
<td>Kaka</td>
<td>Wood</td>
</tr>
</tbody>
</table>
Introduction

Geosciences, which include Geology and Geophysics, are an integral part of the basic science education in most colleges and universities worldwide. Realizing their importance in the development and advancement of Saudi Arabia, KFUPM established the Department of Geology in 1963. With the addition of a Geophysics option in 1976, the name was changed to the Department of Earth Sciences.

Scope

The scope of Earth Sciences is quite broad and diverse, beginning with the ground we walk on, extending inward to the center of the earth, and outward to the other planets in the solar system. While the scope of Geology and Geophysics is closely related, there are some major differences. Geologists study the composition, structure and history of the earth’s crust. Geophysicists use the principles of physics and mathematics to study not only the earth’s surface but its interior as well as its magnetic, electrical, and gravitational fields. Both, however, commonly apply their skills to solve environmental problems and to search for natural resources, such as oil, natural gas, minerals, and groundwater.

Vision

To continue as the leading Geosciences department in the region through a balanced approach between education and research.

Mission

1. To prepare students who are competent in theory and applications of Geosciences. Our graduates will be prepared equally for industrial and post-graduate careers.
2. To provide solutions to problems resulting from natural hazards and human activities in arid regions through focused research.
3. To serve the community by providing expertise in the fields of Petroleum Geology, Groundwater, Environment, and Exploration Geophysics.

Goals

The main goals of Earth Sciences Department programs are: 1) to reflect in our teaching, research, and service the breadth and importance of Earth Sciences to society, 2) to provide students with the technical expertise and skills needed to gather and interpret Earth Sciences data in a scientific manner, 3) to provide students with the necessary tools to effectively communicate the results of geological/geophysical investigations to other professionals and to the public, and 4) to maintain and enhance distinction in the areas of natural resources, including oil and gas, groundwater, mineral resources, and environment.

To achieve such goals, the department has adopted the following strategies to provide: 1) Up-to-date lecture and laboratory-based courses. 2) Laboratory and field study experiences that provide exposure to modern equipment and technologies that will enhance career opportunities of our students. 3) State-of-the-art computer technology and software for data acquisition, analysis, and modeling applications within Earth Sciences. 4) Research opportunities and support for undergraduate students (senior projects, field trips, field courses, and summer training) and graduate students (theses and dissertations).
The Program and Facilities

The Department of Earth Sciences offers majors in both Geology and Geophysics, covering a broad-base program in both options. The undergraduate programs in the Department are sufficiently flexible to accommodate transfer students from other departments in the university.

Facilities currently available in the department include several well-equipped lecture, seminar, audio-visual and resource rooms. The resource room contains a wide selection of professional journals, memoirs, reference textbooks and other publications. The Earth Sciences museum has an impressive inventory of geological specimens (fossils, fossil fuels, minerals, and rocks) collected from different areas in the Kingdom and worldwide. The department owns several 4-wheel drives and a dune buggy for field trips. These vehicles are used for local course-related field trips as well as during the Summer Field camp.

Laboratory facilities and equipment available in the department include thin-section, and reflection microscopy, scanning electron microscopy (SEM), X-ray diffractometry (XRD), equipment for rock-magnetic and paleomagnetic studies, remote sensing, aerial photographs, gravimeter, ground penetrating radar (GPR), resistivity and seismic, and various analytical instruments for the field as well as laboratory hydrologic investigations. In addition, the department enjoys unrestricted access to the world-class research facilities in the Central Analytical Laboratories and remote sensing units of the University Research Institute (RI).

The PC laboratory of the department is equipped with state-of-the art computing facilities. The department has acquired several SUN workstations for training students in different geological and geophysical applications. In addition, the department is connected to the UNIX server of the university Information Technology Center (ITC), a major data processing center in the region.

Employment Opportunities

Most Earth Scientists are employed by government agencies and industries related to oil and gas, mining and minerals, environmental consulting, and water resources. Depleting energy, mineral, and water resources along with increasing concerns about the environment and natural hazards have created added opportunities and challenges for Earth Scientists. In addition, demand for geologists in faculty positions both at school and university levels has been steadily increasing for the last few decades.

In Saudi Arabia, a majority of the Earth Sciences graduates find employment in Saudi ARAMCO, different service companies and government agencies including the Geological Survey of Saudi Arabia, the Ministry of Agriculture and Water, Ministry of Petroleum and Mineral Resources, Ministry of Defense, Ministry of Higher Education, King Abdulaziz City for Science and Technology (KACST), Schlumberger, Western Geophysical, Geophysical Services International, Arabian Geophysical and Surveying (ARGAS) and others. In a fast-developing country like Saudi Arabia, expanded exploration and exploitation efforts for hydrocarbons, economic minerals deposits, and groundwater resources, city and highway planning, and environmental pollution control will require the service of a growing number of Earth Scientists in the future.
Requirements for the B.S. Degree in Geology

Every student majoring in Geology must complete the following curriculum:

(a) General Education Requirements (58 credit hours) Credit Hours

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>CHEM 101, 102</td>
<td>8</td>
</tr>
<tr>
<td>Information and Computer Science</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322, 4xx</td>
<td>14</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, STAT 201</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102</td>
<td>8</td>
</tr>
</tbody>
</table>

(b) Core Requirements (46 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Geology</td>
<td>GEOL 201</td>
<td>3</td>
</tr>
<tr>
<td>Historical Geology</td>
<td>GEOL 203</td>
<td>3</td>
</tr>
<tr>
<td>Paleontology and Biostratigraphy</td>
<td>GEOL 214</td>
<td>3</td>
</tr>
<tr>
<td>Mineralogy and Optics</td>
<td>GEOL 216</td>
<td>4</td>
</tr>
<tr>
<td>Structural Geology</td>
<td>GEOL 305</td>
<td>3</td>
</tr>
<tr>
<td>Sedimentation and Stratigraphy</td>
<td>GEOL 307</td>
<td>4</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>GEOL 318</td>
<td>3</td>
</tr>
<tr>
<td>Petrology</td>
<td>GEOL 320</td>
<td>4</td>
</tr>
<tr>
<td>Geology Seminar</td>
<td>GEOL 409</td>
<td>1</td>
</tr>
<tr>
<td>Petroleum Geology</td>
<td>GEOL 415</td>
<td>3</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>GEOL 423</td>
<td>3</td>
</tr>
<tr>
<td>Field Geology</td>
<td>GEOL 430</td>
<td>6</td>
</tr>
<tr>
<td>Environmental Geology</td>
<td>GEOL 446</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Geophysics</td>
<td>GEOL 202</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) Electives (18 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geology Electives, 6 credits from</td>
<td>GEOL 312, 328, 341, 355, 420, 431, 434, 435, 436, 440, 441, 454, 456, 460, 461, 464, 480</td>
<td>6</td>
</tr>
<tr>
<td>General Studies</td>
<td>One Approved GS xxx Course</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives (Three 200-level or higher classes to a total of 9 credit hours after consultation with the advisor)</td>
<td>Three XXX xxx Courses</td>
<td>9</td>
</tr>
</tbody>
</table>

(d) Summer Training (2 credit hours)

Each student must work as a trainee geologist for a period of a total of eight weeks in an organization/company that conducts geological activities, after which he must submit a written report and make an oral presentation, based on his training in the organization.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>GEOL 399</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 124
Geology Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Pre. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Pre. Health & Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>20 10 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Preparatory Program:</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15 9 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Year (Sophomore)</td>
<td>13 9 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 203</td>
<td>Historical Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>11 9 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Session</td>
<td>12 8 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 305</td>
<td>Structural Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 307</td>
<td>Sedimentation and Stratigraphy</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOP 202</td>
<td>Intro. to Geophysics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>13 6 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Year (Junior)</td>
<td>11 3 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 415</td>
<td>Petroleum Geology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 446</td>
<td>Environmental Geology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOL</td>
<td>GEOL Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14 0 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Session</td>
<td>12 0 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 415</td>
<td>Petroleum Geology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 446</td>
<td>Environmental Geology</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>GEOL</td>
<td>GEOL Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>14 0 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours required in Degree Program:</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Requirements for the B.S. Degree in Geophysics

Every student majoring in Geophysics must complete the following curriculum:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Course(s)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) General Education Requirements (62 credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>CHEM 101, 102</td>
<td>8</td>
</tr>
<tr>
<td>Information and Computer Science</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
<td>9</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322, 4xx</td>
<td>14</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102, 201</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>(b) Core Requirements (40 credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Geophysics</td>
<td>GEOP 202</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Seismology</td>
<td>GEOP 204</td>
<td>3</td>
</tr>
<tr>
<td>Computational Geophysics</td>
<td>GEOP 205</td>
<td>3</td>
</tr>
<tr>
<td>Seismic Exploration I</td>
<td>GEOP 315</td>
<td>3</td>
</tr>
<tr>
<td>Seismic Data Processing</td>
<td>GEOP 320</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project</td>
<td>GEOP 402</td>
<td>3</td>
</tr>
<tr>
<td>Gravity and Magnetics Exploration</td>
<td>GEOP 404</td>
<td>3</td>
</tr>
<tr>
<td>Seminar</td>
<td>GEOP 405</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Exploration</td>
<td>GEOP 450</td>
<td>3</td>
</tr>
<tr>
<td>Physical Geology</td>
<td>GEOL 201</td>
<td>3</td>
</tr>
<tr>
<td>Structural Geology</td>
<td>GEOL 305</td>
<td>3</td>
</tr>
<tr>
<td>Regional Geology</td>
<td>GEOL 318</td>
<td>3</td>
</tr>
<tr>
<td>Classical Mechanics I</td>
<td>PHYS 301</td>
<td>3</td>
</tr>
<tr>
<td>Electricity and Magnetism I</td>
<td>PHYS 305</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>(c) Electives (21 credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics Electives, 6 credits from: GEOP 415, 430, 455, 465, 470, 472, 475, 478, 480</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Math Elective (200-level or higher after consultation with the advisor)</td>
<td>MATH xxx</td>
<td>3</td>
</tr>
<tr>
<td>Geology Elective (200-level or higher after consultation with the advisor)</td>
<td>GEOL xxx</td>
<td>3</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx</td>
<td>3</td>
</tr>
<tr>
<td>Free Electives (200-level or higher after consultation with the advisor)</td>
<td>Two XXX xxx Courses approved by the advisor)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>(d) Summer Training (2 credit hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Training</td>
<td>GEOP 399</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **125**
Geophysics Curriculum

<table>
<thead>
<tr>
<th>Preparatory Year</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program:</td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year (Freshman)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>CHEM 102</td>
<td>General Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year (Sophomore)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOP 202</td>
<td>Intro. to Geophysics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GEOP 204</td>
<td>Intro. to Seismology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>GEOP 205</td>
<td>Computational Geophysics</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 201</td>
<td>General Physics III</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>13</td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year (Junior)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOP 315</td>
<td>Seismic Exploration I</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>GEOP 320</td>
<td>Seismic Data Processing</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOL 305</td>
<td>Structural Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>GEOL 318</td>
<td>Regional Geology</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>GEOL xxx</td>
<td>GEOL Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 301</td>
<td>Classical Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MATH xxx</td>
<td>MATH Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XXX xxx</td>
<td>Free Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td>12</td>
<td>6</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Session</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOP 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year (Senior)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOP 402</td>
<td>Senior Project</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>GEOP 404</td>
<td>Gravity and Magnetic Exploration</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>GEOP xxx</td>
<td>GEOP Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GEOP 405</td>
<td>Seminar</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GEOP 450</td>
<td>Electrical Exploration</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>GS xxx</td>
<td>GS Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 305</td>
<td>Electricity and Magnetism I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 4xx</td>
<td>IAS Elective</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>XXX xxx</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>6</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total credit hours required in Degree Program: | 15 | 0 | 15 |
Department of Petroleum Engineering

Chairman: Dr. Abdullah S. Sultan

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdulraheem</td>
<td>Al-Ramadan</td>
<td>Hossain</td>
</tr>
<tr>
<td>Abu-Khamsin</td>
<td>Awotunde</td>
<td>Mahmoud</td>
</tr>
<tr>
<td>Al-Hashim</td>
<td>Al-Shehri</td>
<td>Muhammeddain</td>
</tr>
<tr>
<td>Al-Yousef</td>
<td>Elkatatny</td>
<td>Sultan</td>
</tr>
<tr>
<td>Al-Majed</td>
<td>Gajbhiye</td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Petroleum engineering is the application of basic sciences for the development, recovery and field processing of oil and gas resources. Due to the complex nature of petroleum reservoirs, various petroleum engineering specialties have emerged. Among these are drilling engineering, formation evaluation, completion and workover, surface processing, and reservoir engineering. It should be emphasized, however, that modern petroleum production operations require a team effort in which all specialties of petroleum engineering as well as geologists, geophysicists, and computer technologists are involved.

In the Petroleum Engineering program, the student is educated in the principles, procedures and practices of drilling, formation evaluation, reservoir studies, production, environmental protection, and economic analysis. The aim of the first two years of the curriculum is to provide the necessary background of physics, chemistry, geology, mathematics, and engineering subjects such as fluid mechanics, thermodynamics, strength of materials and electric circuits. They also introduce the students to basic petroleum engineering subjects. The third and fourth years are dedicated to petroleum engineering courses which cover the core areas of drilling engineering, production engineering, formation evaluation and reservoir engineering.

The job of petroleum engineers starts after the discovery of a structure suitable for oil and gas accumulation. Exploration wells are first drilled and tested to evaluate the economic aspects of the discovery and to obtain the necessary data for the planning and development of the field. Petroleum reservoir engineers are normally responsible for determining the optimum number and locations of the wells and for establishing the production and recovery methods to achieve the maximum recovery in the most economical manner. This involves the utilization of basic and advanced sciences and computer technology.

The role of the petroleum production engineers comes next. These engineers, with the information provided by the reservoir engineers, are responsible for the design and implementation of well completions and subsurface and surface production facilities, which are needed to produce the field and treat the produced fluids to produce oil and gas with the specifications needed for transportation and refining operations. Petroleum drilling engineers are responsible for the design, planning and supervision of the well drilling activities.

Vision

The vision of the Department of Petroleum Engineering at KFUPM is to be recognized worldwide as a center of excellence in education and research in the area of petroleum engineering.

Mission

The mission of the Department of Petroleum Engineering at KFUPM is to have a high-quality program in petroleum engineering that stresses innovation, integration, team work, high ethical standards and awareness of industry needs in addition to advanced research capabilities.
Program Educational Objectives

The educational objectives of the Petroleum Engineering program are to prepare the graduate to:

1. Be a petroleum engineer who is qualified to achieve a successful career in the petroleum industry.
2. Have a good understanding of the scientific, mathematical and technical foundation of petroleum engineering to facilitate self-learning and professional development.
3. Employ practical thinking with commitment to economic, innovative and optimum use of resources.
4. Promote professionalism, work ethics, social values and HSE issues.

Student Outcomes

To achieve the program’s educational outcomes, the program strives to have the student attain the following skills and abilities – the student outcomes - by the time of graduation:

 a. Ability to apply knowledge of mathematics, science and engineering.
 b. Ability to design and conduct experiments as well as to analyze and interpret data.
 c. Ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental and safety.
 d. Ability to function on multidisciplinary teams.
 e. Ability to identify/diagnose and solve petroleum engineering problems.
 f. Understanding of professional and ethical responsibilities.
 g. Ability to communicate effectively in all written and oral forms.
 h. Understanding of the impact of the petroleum industry in the global, economic, environmental and social context.
 i. Recognition of the need for and the ability to engage in life-long learning.
 j. Knowledge of contemporary issues.
 k. Ability to use techniques, skills and modern engineering tools necessary for engineering practices.

Program Strategy

To achieve the program objectives, the Department of Petroleum Engineering endeavors to execute the following measures:

1. Attract and retain top quality faculty members and administrative staff, and invite experienced industry professionals to partake in teaching and research.
2. Attract high quality students, especially those with top university entrance scores, to the petroleum engineering program.
3. Continually improve and update the quality and scope of the program through periodic curriculum revisions and amendments.
4. Adopt and apply advanced educational technologies to improve the teaching and learning environment.
5. Formalize program assessment tools and procedures and make them an integral part of the educational process.

6. Upgrade and expand laboratory facilities and strive to employ qualified laboratory staff.

7. Acquire modern computer software in all areas of petroleum engineering, especially in reservoir simulation, pressure test analysis, and drilling engineering.

8. Promote ties between the department and the local petroleum industry, especially with Saudi Aramco and oil service companies, to expose faculty and students to technical developments and capture research opportunities. Strengthen the role of the department’s Industrial Advisory Committee.

9. Strengthen relations between the department and professional societies, such as the Society of Petroleum Engineers (SPE) and its local section, and encourage student involvement in such societies.

10. Foster interdisciplinary cooperation with allied KFUPM units such as the Department of Earth Sciences and the Center for Petroleum and Minerals.

11. Foster collaboration with top petroleum engineering schools, such as the ones at Stanford University, Colorado School of Mines, and Texas A&M University, on all aspects of undergraduate education including student and faculty exchange programs.
Requirements for the B.S. Degree in Petroleum Engineering

Every student majoring in Petroleum Engineering must complete the following curriculum:

(a) General Education Requirements (73 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>IAS 101, 201, 301, ENGL 101, 102, 214</td>
<td>15</td>
</tr>
<tr>
<td>Engineering</td>
<td>CE 202, CHE 204, EE 204, ME 203</td>
<td>12</td>
</tr>
<tr>
<td>Geology</td>
<td>GEOL 201, 318</td>
<td>6</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>Islamic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td>MATH 101, 102, 201, 202, STAT 319</td>
<td>17</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Sciences</td>
<td>CHEM 101, PHYS 101, 102</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>73</td>
</tr>
</tbody>
</table>

(b) Core Requirements (45 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Engineering</td>
<td>PETE 203, 304</td>
<td>6</td>
</tr>
<tr>
<td>Formation Evaluation</td>
<td>PETE 303, 305, 306</td>
<td>10</td>
</tr>
<tr>
<td>Production Engineering</td>
<td>PETE 302, 403</td>
<td>6</td>
</tr>
<tr>
<td>Reservoir Engineering</td>
<td>PETE 204, 205, 301, 402, 410</td>
<td>15</td>
</tr>
<tr>
<td>Others</td>
<td>PETE 201, 407, 408, 411</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

(c) Electives (15 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE Electives</td>
<td>Two PETE 4xx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Technical Elective</td>
<td>XE xxx</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>approved list or any other course subject to the approval of the academic advisor and the Department chairman)</td>
<td></td>
</tr>
<tr>
<td>General Studies</td>
<td>Two GS xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

(d) Summer Training (0 credit hours)
A student of junior standing spends a period of eight summer weeks working in the industry to gain exposure to and appreciation of the petroleum engineering profession. On completion of the training, the student is required to write and submit a formal report on his work.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>PETE 399</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The total number of credit hours required is **133**
Petroleum Engineering Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparatory Year

ENGL 01-xx	Prep. English I (First Quarter)	15	5	4
ENGL 02-xx	Prep. English II (Second Quarter)	15	5	4
MATH 001	Prep. Math I	3	1	4
PYP 001	Prep. Physical Science	2	0	2
PYP 003	University Study Skills	0	2	1
PE 001	Pre. Health and Physical Educ. I	0	2	1
PETE 4xx	PETE Elective I			
IAS 301	Language Comm. Skills			
IAS 201	Objective Writing			
PHYS 101	General Physics I			
MATH 101	Calculus I			

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PETE 201</td>
<td>Intro. to Petroleum Eng.</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 204</td>
<td>Fundamentals of Electrical Circuits</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GEOL 201</td>
<td>Physical Geology</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ME 203</td>
<td>Thermodynamics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PETE 203</td>
<td>Drilling Eng. I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 319</td>
<td>Probability and Stat. for Eng. and Scientists</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PETE 301</td>
<td>Reservoir Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PETE 302</td>
<td>Well Completion</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PETE 303</td>
<td>Well Logging</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PETE 401</td>
<td>Reservoir Simulation</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PETE 408</td>
<td>Seminar</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PETE 410</td>
<td>Natural Gas Eng.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PETE 4xx</td>
<td>PETE Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XE xxx</td>
<td>Technical Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETE 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 133
COLLEGE OF SCIENCES

Dean: Dr. Suliman S. Al-Homidan

UNDERGRADUATE DEPARTMENTS

BIOLOGY
CHEMISTRY
EARTH SCIENCES
MATHEMATICS AND STATISTICS
PHYSICS
The College of Sciences provides programs in the Physical Sciences and Mathematics at the undergraduate and graduate levels. The College also offers science service courses for students enrolled in all of the other colleges. The College includes the Departments of Biology, Chemistry, Earth Sciences, Mathematics and Statistics, and Physics.

The programs of the College are formulated to provide the Kingdom with students that are skilled in ways of understanding the world and to make them prepared to respond thoughtfully to learning opportunities and personal challenges that come their way. Education in the College seeks to transform the students into well-informed, engaged and empowered individuals. The classes are small in size to facilitate teaching thereby engaging students in a vigorous and in-depth active learning. We offer multiple opportunities from a wide range of disciplinary programs. Learning through first-hand experience towards a substantial and meaningful education is one objective. Students are encouraged to develop an academic plan that includes study abroad, internships in fields of interest, independent research, and extra curricular experiences that complement learning in their chosen major.

The recently introduced program in actuarial science and financial mathematics is designed to prepare students for an actuarial career. This program combines mathematics, statistics, finance, and insurance into one dynamic field of study. The program is expected to provide manpower that not only understands the economic, societal, operational, and financial risks facing the country’s businesses but also knows how to advise them on the best course of action to minimize and manage these risks. This also goes very well with the domestic demands of the growing Takaful industries in the country. Actuaries analyze and solve complex business and social problems by designing plans for managing risks, such as designing insurance, Takaful, and pension plans.

Recently, a new biological science department has been added. It will involve fundamental knowledge in the field of biology and other related fields, as well as involve basic research in the field of biology as a multidisciplinary field related to natural, environmental, engineering, biotechnology and biomedical sciences. The department is not offering a BS degree but will rather focus on building collaboration within the University and abroad in the area of research in biotechnology which will serve the strategic choices of the Kingdom. The Department of biological sciences will offer undergraduate biology courses required by several engineering department.

Programs offered in the College:

1. Mathematics (BS, MS, and PhD)
2. Statistics (BS)
3. Actuarial Science & Financial Mathematics (BS)
4. Physics (BS, MS, and PhD)
5. Chemistry (BS, MS, and PhD)
6. Industrial Chemistry (BS, MS, and PhD)
7. Geology (BS, MS, and PhD)
8. Geophysics (BS, MS, and PhD)
9. Environmental Science (MS)
10. Medical Physics (MS)
Department of Chemistry

Chairman: Dr. Abdulaziz A. Al-Saadi

<table>
<thead>
<tr>
<th>Faculty</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abulkibash</td>
<td>Badawi</td>
<td>Maung</td>
</tr>
<tr>
<td>Al-Arfaj</td>
<td>Chanbasha</td>
<td>Mazumder</td>
</tr>
<tr>
<td>Al-Barri</td>
<td>El-Ali</td>
<td>Morsy</td>
</tr>
<tr>
<td>Al-Betar</td>
<td>Fettouhi</td>
<td>Muallem</td>
</tr>
<tr>
<td>Al-Harbi</td>
<td>Forner</td>
<td>Musa</td>
</tr>
<tr>
<td>Alhooshani</td>
<td>Hamdan</td>
<td>Oweimreen</td>
</tr>
<tr>
<td>Al-Saadi</td>
<td>Imam</td>
<td>Saleh</td>
</tr>
<tr>
<td>Al-Suawaiyan</td>
<td>Isab</td>
<td>Siddiqi</td>
</tr>
<tr>
<td>Al-Thagfi</td>
<td>Kawde</td>
<td>Ullah</td>
</tr>
<tr>
<td>Asrof</td>
<td>Khaled</td>
<td>Wazeer</td>
</tr>
</tbody>
</table>
Introduction

The Chemistry Department is one of the earliest departments established at KFUPM and one of the leading chemistry departments in the Middle East. There are over 30 faculty members with a wide range of research interests. These are reflected in the content of our advanced courses, where topics at the forefront of research are taught. The Chemistry Department offers the degree of Bachelor of Science with two options: (1) Chemistry and (2) Industrial Chemistry.

The chemist is a professional scientist who specializes in some specific area of chemistry. He can either be involved in research or in the utilization of our natural resources. As a research chemist, he studies the ways in which matter changes and how to develop new materials to improve our living conditions. The chemist may be an analytical chemist who performs a variety of tasks such as, to analyze water, air, or petroleum samples, to determine the composition of a newly discovered substance, or to identify the materials in a crime investigation. An inorganic chemist synthesizes and characterizes materials like alloys, semiconductors, superconductors, glasses, catalysts, and inorganic pharmaceuticals. An organic chemist is concerned with the syntheses of new materials such as plastics, pharmaceutical products, or other commercial chemicals from various other chemicals or from natural resources and he studies the chemical properties of various carbon compounds. A physical chemist applies physics principles to the structure of matter and the process of chemical changes. An environmental chemist can investigate the conditions of pollution, monitor pollutants and assess hazardous effects. There are many other branches of chemistry, such as petroleum chemistry, biochemistry, nanochemistry and electrochemistry.

An industrial chemist undertakes the optimization of complex processes, but unlike engineers, he examines and modifies the chemistry of the process itself. The industrial chemist is involved in all the production stages of a wide range of important chemicals and materials. These include the design and modification of the actual chemical process, the analysis of raw materials, the application of advanced computers to the simulation and control of the chemical plant, verification of the quality of the product and giving technical advice to both management and customers.

Chemistry graduates are expected to contribute to the academic, civil service and industrial development of the Kingdom by working in educational institutions, in government and in private institutions responsible for public health and safety of the environment, or in one of the many industries whose products or processes involve chemical technology. These areas include: schools and technical colleges, water authorities, desalination plants, agencies for environment protection, the standards and specifications bureau; the vast petroleum, petrochemical and mining industries scattered all over the Kingdom; as well as the many smaller industries whose products or processes involve chemical technology. Chemistry graduates are also expected to form the backbone of the various research centers that are emerging in the Kingdom whether related to government organizations such as agriculture, health, petroleum, commerce (standards and quality control) or to private organizations. Industrial research centers, in particular, are envisaged to supplement huge industrial complexes to utilize manpower trained under the above programs of studies.

Vision

To be a leading department in chemical education, research and community services.
Mission

The chemistry department is committed to excellence in the discovery and transmission of knowledge in the field of chemistry. It will honor this commitment by a continuous modernization of its programs to achieve international recognition and satisfy the Saudi industrial need of skilled manpower. It will support research that has impact on the Kingdom’s economy and provide distinguished services to the national community. It will provide a nurturing and conducive environment for quality teaching, learning and research in basic and applied chemistry relying on teamwork and successful organizational practices.

Goals

I. Teaching:

- To offer quality programs in chemistry and industrial chemistry
- To integrate modern teaching/learning methods into the curriculum
- To avail, for faculty, the latest instructional technology tools
- To hire and develop distinguished faculty
- To develop new interdisciplinary programs
- To incorporate Saudi industry feedback into the curriculum

II. Research:

- To respond to current technological needs of Saudi industry
- To conduct internationally recognized research
- To consolidate and add to the present areas of concentration
- To support multidisciplinary research
- To acquire and maintain state of the art instrumentation
- To attract and recruit high quality graduate students
- To promote undergraduate research
- To endorse collaborative research with national and international institutions

III. Services

- To disseminate chemical awareness in the community
- To carry out analysis of environmental contaminants and fuel oils
- To offer specialized training on instrumentation and methodologies
- To update high school teachers skills through tailored programs
- To act as a consultation hub for industrial, governmental and academic institutions

To achieve these goals, the chemistry and industrial chemistry curricula are designed to provide the necessary professional background for pursuing careers in academic, governmental and industrial establishments. The courses offered are those recommended by international chemical organizations and provide a fundamental knowledge in the major areas of chemistry. Both programs include independent study and research where the student learns to apply different techniques and principles to the solution of scientific problems under the direction of a member of the faculty. The duration of this activity is one semester for an industrial chemist and two semesters for a chemist. Summer training is required from
chemistry and industrial chemistry students. For industrial chemists, the training must be done in industry.

Guidelines on Electives

Chemistry electives may be chosen by students majoring in chemistry from any 300 or 400 level chemistry courses and include: environmental chemistry and environmental analysis, chemistry of petroleum processes, polymer chemistry, homogeneous catalysis in industrial processes, industrial organic chemistry, industrial inorganic chemistry, spectroscopic identification of organic compounds, synthetic organic chemistry, computer applications in chemistry, photochemistry and others.

Free Electives can be from courses at the 200 level or above in the University except those offered by the Chemistry Department or Islamic and Arabic Studies courses. Engineering electives can be from courses at the 200 level or above in the Colleges of Engineering Sciences or Applied Engineering.

Biology Courses

Five biology courses are offered by the Chemistry Department. All students at KFUPM can take these courses as requirements, where appropriate, or as electives.
Requirements for the B.S. Degree in Chemistry

Every student majoring in Chemistry must complete the following curriculum:

(a) General Education Requirements (52 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102, 201</td>
<td>12</td>
</tr>
</tbody>
</table>

(b) Core Requirements (50 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry</td>
<td>CHEM 223, 323, 324</td>
<td>8</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>CHEM 101, 102</td>
<td>8</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>CHEM 331, 332</td>
<td>7</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>CHEM 201, 202, 303</td>
<td>11</td>
</tr>
<tr>
<td>Physical Chemistry</td>
<td>CHEM 212, 311, 312</td>
<td>11</td>
</tr>
<tr>
<td>Professional Skills</td>
<td>CHEM 471, 472, 479</td>
<td>5</td>
</tr>
</tbody>
</table>

(c) Electives (20 credit hours)
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Electives</td>
<td>Two CHEM xxx Courses</td>
<td>6</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 4xx</td>
<td>2</td>
</tr>
<tr>
<td>Free Electives (not from CHEM or IAS)</td>
<td>Four XXX xxx Courses</td>
<td>12</td>
</tr>
</tbody>
</table>

(d) Summer Training (2 credit hours)
Each student must spend two months in a chemical laboratory (analytical laboratory, hospital, clinic, etc.) or in a chemical industry firm, after which he must submit a report and present a seminar before receiving a grade for this course.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>CHEM 399</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 124
Chemistry Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Pre. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>PYP 002</td>
<td>Pre. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Pre. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Preparatory Program:</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 201</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>CHEM 202</td>
<td>Organic Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>CHEM 212</td>
<td>Physical Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>CHEM 323</td>
<td>Instrumental Chemical Analysis</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 223</td>
<td>Quant. Methods of Chemical Analysis</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 102</td>
<td>Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td></td>
<td></td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 471</td>
<td>Chemistry Senior Project I</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>CHEM 472</td>
<td>Chemistry Senior Project II</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 479</td>
<td>Chemistry Seminar</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>XXX</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 301</td>
<td>CHEM Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>XXX</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 302</td>
<td>CHEM Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>IAS 4xx</td>
<td>IAS Elective</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>XXX</td>
<td>Free Elective IV</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Total credit hours required in Degree Program:</td>
<td></td>
<td></td>
<td></td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Requirements for the B.S. Degree in Industrial Chemistry

Every student majoring in Industrial Chemistry must complete the following curriculum:

(a) General Education Requirement (55 credit hours)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
<td>9</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
<td>3</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 111, 212, 322</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
<td>14</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102, 201</td>
<td>12</td>
</tr>
<tr>
<td>Management</td>
<td>MGT 301</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

(b) Core Requirements (59 credit hours)

Industrial Chemistry (19 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Chemical Engineering</td>
<td>CHE 201</td>
</tr>
<tr>
<td>Industrial Catalysis</td>
<td>CHEM 355</td>
</tr>
<tr>
<td>Polymer Chemistry</td>
<td>CHEM 450</td>
</tr>
<tr>
<td>Chemistry of Petroleum Processing</td>
<td>CHEM 453</td>
</tr>
<tr>
<td>Industrial Inorganic Chemistry</td>
<td>CHEM 455</td>
</tr>
<tr>
<td>Industrial Organic Chemistry</td>
<td>CHEM 456</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

Pure Chemistry (40 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry</td>
<td>CHEM 323, 324</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>CHEM 101, 102</td>
</tr>
<tr>
<td>Inorganic Chemistry</td>
<td>CHEM 331</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>CHEM 201, 202, 303</td>
</tr>
<tr>
<td>Physical Chemistry</td>
<td>CHEM 212, 311</td>
</tr>
<tr>
<td>Professional Skills</td>
<td>CHEM 471, 479</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
</tbody>
</table>

(c) Electives (8 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islamic and Arabic Studies</td>
<td>IAS 4xx</td>
</tr>
<tr>
<td>Free Elective (not from CHEM or IAS)</td>
<td>XXX xxx</td>
</tr>
<tr>
<td>Engineering Elective</td>
<td>XXX xxx</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

(d) Summer Training (2 credit hours)

Each student must spend two months in a chemical laboratory (analytical laboratory, hospital, clinic, etc.) or in a chemical industry firm, after which he must submit a report and present a seminar before receiving a grade for this course.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>CHEM 399</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **124**
Industrial Chemistry Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>ICS 103</td>
<td>Computer Programming in C</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>PHYS 201</td>
<td>Health and Physical Educ. II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Year (Freshman)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IAS 101</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 15 9 18

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Second Year (Sophomore)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 201</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 11 6 13

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Third Year (Junior)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Inorganic Chemistry</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 311</td>
<td>Physical Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>General Physics III</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CHE 201</td>
<td>Principles of Chem. Eng. I</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 14 13 17

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summer Session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fourth Year (Senior)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 453</td>
<td>Chemistry of Petroleum Processing</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 455</td>
<td>Industrial Inorganic Chemistry</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MGT 301</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX</td>
<td>Free Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 13 4 14

Total credit hours required in Degree Program: 124
Department of Mathematics and Statistics

Chairman: Dr. Husain Salem Al-Attas

Faculty

<table>
<thead>
<tr>
<th>Abbas</th>
<th>Anabosi</th>
<th>Laradji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbasi</td>
<td>Azad</td>
<td>Lo</td>
</tr>
<tr>
<td>Abuihlail</td>
<td>Belhaiza</td>
<td>Malik, N</td>
</tr>
<tr>
<td>AbuShoshah</td>
<td>Binns</td>
<td>Malik, M</td>
</tr>
<tr>
<td>Abu-Sheih</td>
<td>Bokhari, A</td>
<td>Mellouli</td>
</tr>
<tr>
<td>Ahmad</td>
<td>Bokhari, M</td>
<td>Messaoudi</td>
</tr>
<tr>
<td>Alassaf</td>
<td>Bonfoh</td>
<td>Mimouni</td>
</tr>
<tr>
<td>Alassar</td>
<td>Boucherif</td>
<td>Mustafa</td>
</tr>
<tr>
<td>Al-Attas</td>
<td>Chanane</td>
<td>Mustapha</td>
</tr>
<tr>
<td>Al-Dweik</td>
<td>Echi</td>
<td>Omar</td>
</tr>
<tr>
<td>Alfuraidan</td>
<td>El-Gebeily</td>
<td>Riaz</td>
</tr>
<tr>
<td>Al-Garni</td>
<td>Fairag</td>
<td>Saleh, K</td>
</tr>
<tr>
<td>Al-Homidan</td>
<td>Fukhar-ud-din</td>
<td>Saleh, M</td>
</tr>
<tr>
<td>Alhumidi</td>
<td>Furati</td>
<td>Sarhan</td>
</tr>
<tr>
<td>Al-Mutawa</td>
<td>Ibrahim</td>
<td>Shehadeh</td>
</tr>
<tr>
<td>Al-Rasasi</td>
<td>Kabbaj</td>
<td>Smii</td>
</tr>
<tr>
<td>Al-Sabah</td>
<td>Kafini</td>
<td>Tatar, A</td>
</tr>
<tr>
<td>Al-Sawi</td>
<td>Khalid</td>
<td>Tatar, N</td>
</tr>
<tr>
<td>Alshahrani</td>
<td>Khalfallah</td>
<td>Tawfiq</td>
</tr>
<tr>
<td>Al-Shammari</td>
<td>Khan, A</td>
<td>Yousuf</td>
</tr>
<tr>
<td>Al-Smail</td>
<td>Khan, S</td>
<td>Zaman</td>
</tr>
</tbody>
</table>
Introduction

The Department of Mathematics and Statistics offers six major programs: a four-year BS program in Mathematics, a four-year BS program in Statistics, a four-year BS program in Actuarial Sciences, a graduate program leading to an MS degree in Mathematics, MS degree in Statistics, and a Ph.D. program in Mathematics.

The Department is also responsible for teaching mathematics courses at both the undergraduate and graduate levels in the Colleges of Sciences, Computer Science and Engineering, Engineering, Environmental Design, and Industrial Management.

Vision

To be recognized internationally for excellence in research and teaching, and nationally for high-quality service.

Mission

The Department of Mathematics and Statistics is committed to:

- provide effective and innovative graduate and undergraduate education to both math and non-math major students in order to prepare them to succeed in their further studies and careers;
- contribute high-quality basic and applied research, and utilize mathematical talent for the understanding and modeling of real-life problems;
- deepen community appreciation of mathematical sciences and their role.

Goals

The objective of the BS programs in mathematics and statistics is to prepare the students for career opportunities in educational institutions, industry, government organizations and other areas involving the application of mathematics. The program also prepares the students for graduate studies in mathematics and other research organizations using mathematical tools.

The programs are broad-based and cover main-stream mathematics, namely: pure mathematics, applied mathematics, numerical analysis, and statistics. The curricula are designed to strengthen both conceptual and computational talent of the students and as such the graduates will have a solid background to pursue higher educational programs as well as take up assignments in industry and other related practical fields.
Requirements for the B.S. Degree in Mathematics

Every student majoring in Mathematics must complete the following curriculum:

(a) General Education Requirements (58 credit hours)

<table>
<thead>
<tr>
<th>Category</th>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201</td>
<td>9</td>
</tr>
<tr>
<td>Computing</td>
<td>ICS 101</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
<td>14</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>CHEM 101, 102, PHYS 101</td>
<td>16</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 111, 212, 322, 4xx</td>
<td>8</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
<td>2</td>
</tr>
</tbody>
</table>

58

(b) Mathematics Core Requirements (28 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Sets and Structures</td>
<td>MATH 232</td>
</tr>
<tr>
<td>Introduction to Linear Algebra</td>
<td>MATH 280</td>
</tr>
<tr>
<td>Methods of Applied Mathematics</td>
<td>MATH 301</td>
</tr>
<tr>
<td>Advanced Calculus I</td>
<td>MATH 311</td>
</tr>
<tr>
<td>Introduction to Numerical Computing</td>
<td>MATH 321</td>
</tr>
<tr>
<td>Modern Algebra I</td>
<td>MATH 345</td>
</tr>
<tr>
<td>Advanced Calculus II</td>
<td>MATH 411</td>
</tr>
<tr>
<td>Introduction to Complex Variables</td>
<td>MATH 430</td>
</tr>
<tr>
<td>Seminar in Mathematics</td>
<td>MATH 490</td>
</tr>
<tr>
<td>Introduction to Statistics</td>
<td>STAT 201</td>
</tr>
</tbody>
</table>

28

(c) Electives (33 credit hours)

<table>
<thead>
<tr>
<th>Electives</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least 9 credits from one of the groups:</td>
<td></td>
</tr>
<tr>
<td>Statistics: STAT 301, 302, 310, 325, 365, 415, 430, 435, 440</td>
<td></td>
</tr>
<tr>
<td>Free Electives (at least two courses numbered 300 or above; at least 9 credit hours of non-math courses)</td>
<td>Five XXX xxx Courses</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx</td>
</tr>
</tbody>
</table>

33

(d) Summer Training (2 credit hours)

<table>
<thead>
<tr>
<th>Summer Training</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 399</td>
<td>2</td>
</tr>
</tbody>
</table>

2

The total number of credit hours required is 121
Mathematics Curriculum

<table>
<thead>
<tr>
<th>Preparatory Year</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
<td></td>
<td>ENGL 03-xx</td>
<td>Prep. English III (Third Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>ENGL 04-xx</td>
<td>Prep. English IV (Fourth Quarter)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td>MATH 002</td>
<td>Prep. Math II</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>PYP 002</td>
<td>Prep. Computer Science</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td>PYP 004</td>
<td>Prep. Eng. Technology</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td>PE 002</td>
<td>Prep. Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Total credit hours required in Preparatory Program: 31

<table>
<thead>
<tr>
<th>First Year (Freshman)</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td></td>
<td>CHEM 102</td>
<td>General Chemistry II</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>PHYS 102</td>
<td>General Physics II</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ICS 101</td>
<td>Computer Programming</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td>MATH 102</td>
<td>Calculus II</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
<td>ENGL 102</td>
<td>Intro. to Report Writing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td>PE 102</td>
<td>Health and Physical Educ. II</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>12</td>
<td>19</td>
</tr>
</tbody>
</table>

Second Year (Sophomore) | COURSE | TITLE | LT | LB | CR | COURSE | TITLE | LT | LB | CR |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>GS</td>
<td>xxx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH 202</td>
<td>Elements of Differential Eq.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 232</td>
<td>Intro. to Sets and Structures</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH 280</td>
<td>Intro. to Linear Algebra</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Intro. to Statistics</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td>MATH 345</td>
<td>Modern Algebra I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year (Junior) | COURSE | TITLE | LT | LB | CR | COURSE | TITLE | LT | LB | CR |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 301</td>
<td>Methods of Applied Math</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH 411</td>
<td>Advanced Calculus II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 311</td>
<td>Advanced Calculus I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH xxx</td>
<td>MATH Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Intro. to Numerical Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH xxx</td>
<td>MATH Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Free Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>XXX xxx</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Summer Session | COURSE | TITLE | LT | LB | CR | COURSE | TITLE | LT | LB | CR |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year (Senior) | COURSE | TITLE | LT | LB | CR | COURSE | TITLE | LT | LB | CR |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td>IAS 4xx</td>
<td>IAS Elective</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH xxx</td>
<td>MATH Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH 430</td>
<td>Intro. to Complex Variables</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH xxx</td>
<td>MATH Elective IV</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH 490</td>
<td>Seminar in Math</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>MATH xxx</td>
<td>MATH Elective V</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Free Elective IV</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>XXX xxx</td>
<td>Free Elective V</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 121
B.S. Degree in Statistics

Objectives of the Program

Statistics is the science that deals with collecting data, analyzing it and making decisions from it. A statistician is a value asset in every industry from the design stage, through the data collection stage to the analysis. The input of the statistician is essential for the success of every endeavor.

The objective of the BS program in Statistics is to prepare students for career opportunities in industry and government, as well as the private sector in such fields as business, banking, insurance, health, and for further graduate studies. The program has a good balance of theory, applications and data analysis, as well as carefully selected sequences of courses from computer science, management information systems, accounting and finance, and management and marketing. This interdisciplinary approach is meant to make the program flexible, and give the students a broad base of education, improving their chances of employment. Graduates of the program are well-qualified statisticians with good knowledge in computing, information systems, management and marketing.
Requirements for the B.S. Degree in Statistics

Every student majoring in Statistics must complete the following curriculum:

(a) General Education Requirements (64 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201, 301</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 103</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 111, 212, 322, 4xx</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>CHEM 101, 102, PHYS 101, 102</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
</tr>
<tr>
<td>Economy and MIS</td>
<td>ECON 101, MIS 105</td>
</tr>
</tbody>
</table>

(b) Core Requirement (26 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Linear Algebra</td>
<td>MATH 280</td>
</tr>
<tr>
<td>Introduction to Numerical Computing</td>
<td>MATH 321</td>
</tr>
<tr>
<td>Introduction to Statistics</td>
<td>STAT 201</td>
</tr>
<tr>
<td>Introduction to Probability Theory</td>
<td>STAT 301</td>
</tr>
<tr>
<td>Statistical Inference</td>
<td>STAT 302</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>STAT 310</td>
</tr>
<tr>
<td>Data Collection and Sampling Methods</td>
<td>STAT 365</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>STAT 430</td>
</tr>
<tr>
<td>Senior project in Statistics</td>
<td>STAT 470</td>
</tr>
</tbody>
</table>

(c) Electives (30 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four courses of:</td>
<td>STAT 320, 325, 355, 361, 375, 415, 435, 440, 460, 461, 475, 499</td>
</tr>
<tr>
<td>Four courses from one of the groups: Group I: ICS 201, 202, 252, 334, MIS 301, 340, 401, 410, 425</td>
<td>12</td>
</tr>
<tr>
<td>Group II: ACCT 201, 202, ECON 202, FIN 301, 302, MGT 210, 301, MKT 301, 345</td>
<td></td>
</tr>
<tr>
<td>Group III: From any department with the approval of the advisor</td>
<td></td>
</tr>
<tr>
<td>One Extra Technical Elective</td>
<td>XXX xxx</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx</td>
</tr>
</tbody>
</table>

(d) Summer Training (2 credit hours)

Students are required to spend eight weeks working in industry prior to the term in which they expect to graduate.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>STAT 399</td>
</tr>
</tbody>
</table>

The total number of credit hours required is 122.
Statistics Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year (Freshman)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Academic Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year (Sophomore)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 214</td>
<td>Academic & Professional Comm.</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 201</td>
<td>Calculus III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>ECON 101</td>
<td>Principles of Economics</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 201</td>
<td>Intro. to Statistics</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year (Junior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 301</td>
<td>Intro. to Probability Theory</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>MATH 321</td>
<td>Intro. to Numerical Computing</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT 310</td>
<td>Regression Analysis</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summer Session

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Fourth Year (Senior)

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>STAT 430</td>
<td>Experimental Design</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT xxx</td>
<td>STAT Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>STAT xxx</td>
<td>STAT Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Technical Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit hours required in Degree Program: 122
B.S. Degree in Actuarial Sciences

Objectives of the Program

Actuarial Science and Financial Mathematics is an area of study that manages risk in the financial and government sector and industries. Specifically, it involves analyzing risk data and making informed decisions from it. It is a multidisciplinary study that combines four major areas (Mathematics, Statistics, Finance, and Insurance) into one. A graduate of the program is able to contribute to all areas of Saudi Arabian and international financial sectors as well as the government sector where the objective of minimization of risk is the main daily focus.

An actuary is a professional who analyzes the financial consequences of risk. Actuaries use mathematics, statistics, financial theory and insurance to study uncertain future adverse events, and decrease the impact of those future loss events. Actuaries are an integral part of the management team of companies that employ them. Their work requires a combination of strong analytical skills, business knowledge and understanding of human behavior to design and manage programs that control risk. A graduate typically finds employment in private and government sectors and industry that deal with activities such as investment, insurance, pension funding, financial consulting, or healthcare funding. The actuarial profession has been rated the best career for several years in the USA (e.g. rated the best career in 2010 by the Wall Street Journal). Graduates of such programs typically find no issues in finding a good first job. With some professional exams, graduates may face a different but welcome job dilemma of choosing which company in which to enlist.

The objective of the BS program in Actuarial Science and Financial Mathematics is to prepare students for a career as an actuary or financial risk manager. In addition, the program also prepares the students for international professional society examinations. The program has a good balance of theory, applications and data analysis, as well as carefully selected sequences of courses from computer science, economics, accounting, mathematics, statistics, finance, and risk management. This interdisciplinary approach is meant to make the program flexible and give the students a broad based education. The program also prepares students for further graduate study in any area of Applied Mathematics, Statistics, Actuarial Science, Finance, or Business.
Requirements for the B.S. Degree in Actuarial Sciences

Every student majoring in Actuarial Sciences must complete the following curriculum:

<table>
<thead>
<tr>
<th>(a) General Education Requirements (55 credit hours)</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>ENGL 101, 102 6</td>
</tr>
<tr>
<td>Communication Skills</td>
<td>ENGL 214, IAS 101, 201 7</td>
</tr>
<tr>
<td>Computing</td>
<td>ICS 101 or ICS 103 3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202, 280 17</td>
</tr>
<tr>
<td>Economy</td>
<td>ECON 101, 102 6</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 111, 212, 322, 418 8</td>
</tr>
<tr>
<td>Accounting</td>
<td>ACCT 110, 210 6</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102 2</td>
</tr>
</tbody>
</table>

(b) Actuarial Sciences Core Requirements (47 credit hours)

<table>
<thead>
<tr>
<th></th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Methods for Actuaries</td>
<td>STAT 213 3</td>
</tr>
<tr>
<td>Financial Management</td>
<td>FIN 250 3</td>
</tr>
<tr>
<td>Quantitative Methods for Actuaries</td>
<td>MATH 322 3</td>
</tr>
<tr>
<td>Introduction to Probability Theory</td>
<td>STAT 301 3</td>
</tr>
<tr>
<td>Statistical Inference</td>
<td>STAT 302 3</td>
</tr>
<tr>
<td>Regression Analysis</td>
<td>STAT 310 3</td>
</tr>
<tr>
<td>Time Series</td>
<td>STAT 460 3</td>
</tr>
<tr>
<td>Financial Mathematics</td>
<td>AS 201 3</td>
</tr>
<tr>
<td>Actuarial Science Problem Lab I</td>
<td>AS 288 1</td>
</tr>
<tr>
<td>Actuarial Contingencies I</td>
<td>AS 381 3</td>
</tr>
<tr>
<td>Actuarial Science Problem Lab II</td>
<td>AS 388 1</td>
</tr>
<tr>
<td>Actuarial Contingencies II</td>
<td>AS 482 3</td>
</tr>
<tr>
<td>Stochastic Processes for Actuaries</td>
<td>STAT 416 3</td>
</tr>
<tr>
<td>Investments</td>
<td>FIN 320 3</td>
</tr>
<tr>
<td>Financial Engineering</td>
<td>FIN 470 3</td>
</tr>
<tr>
<td>Risk Management, Conventional and Islamic Insurance</td>
<td>FIN 430 3</td>
</tr>
<tr>
<td>Actuarial Risk Theory and Credibility</td>
<td>AS 483 3</td>
</tr>
</tbody>
</table>

(c) Electives (15 credit hours)

Three courses from:	AS 498, 475, ECON 206, 305, 420, FIN 310, 410, 421, 440,
Recommended:	MATH 301, 311, 471, 472, 480, MGT 301, 311, MKT 250,
Takaful Insurance Option: AS 475, 498	STAT 325, 355, 361, 365, 435, 430, 440
Financial Math Option: FIN 410, 421	
Risk Management Option: STAT 361, MGT 301	
The third course is selected from the list with general studies	
consultation with the advisor	
General Studies	Two GS xxx Courses 6

(d) Cooperative Work (9 credit hours)

| Cooperative Work | AS 351 9 |

The total number of credit hours required is 126
Actuarial Sciences Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
</table>
Preparatory Year

ENGL 01-xx	Prep. English I (First Quarter)	15	5	4	ENGL 03-xx	Prep. English III (Third Quarter)	15	5	4
ENGL 02-xx	Prep. English II (Second Quarter)	4	4		ENGL 04-xx	Prep. English IV (Fourth Quarter)	3	1	4
MATH 001	Prep. Math I	3	1	4	MATH 002	Prep. Math II	3	1	4
PYP 001	Prep. Physical Science	2	0	2	PYP 002	Pre. Computer Science	0	2	1
PYP 003	University Study Skills	0	2	1	PYP 004	Pre. Eng. Technology	0	2	1
PE 001	Prep. Health and Physical Educ. I	0	2	1	PE 002	Prep. Health and Physical Educ. II	0	2	1

Total credit hours required in Preparatory Program: 31

First Year (Freshman)

ENGL 101	Intro. to Academic Discourse	3	0	3	IAS 111	Belief and its Effects	2	0	2
PE 101	Health and Physical Educ. I	0	2	1	PE 102	Health and Physical Educ. II	0	2	1
MATH 101	Calculus I	4	0	4	ENGL 102	Intro. to Report Writing	3	0	3
ECON 101	Principles of Economics I	3	0	3	MATH 102	Calculus II	4	0	4
IAS 101	Practical Grammar	2	0	2	ACCT 110	Intro. to Financial Accounting	2	2	3
ICS 103	Computer Programming in C	2	3	3	ECON 102	Principles of Economics II	3	0	3

Total credit hours: 14 5 16

Second Year (Sophomore)

IAS 201	Objective Writing	2	0	2	IAS 212	Professional Ethics	2	0	2
AS 201	Financial Math	3	0	3	MATH 202	Elements of Differential Eq.	3	0	3
MATH 201	Calculus III	3	0	3	FIN 250	Financial Management	3	0	3
ACCT 210	Intro. to Managerial Accounting	2	2	3	MATH 280	Intro. to Linear Algebra	3	0	3
STAT 213	Statistical Methods for Actuaries	2	2	3	AS 288	Actuarial Science Problem Lab I	0	1	1
ENGL 214	Academic & Professional Comm.	3	0	3	STAT 301	Intro. to Probability Theory	3	0	3

Total credit hours: 15 4 17

Third Year (Junior)

IAS 322	Human Rights in Islamic	2	0	2	MATH 322	Quant. Methods for Actuaries	3	0	3
STAT 302	Statistical Inference	3	0	3	FIN 430	Risk Management, Conv. and Islamic Insurance	3	0	3
STAT 310	Regression Analysis	3	0	3	STAT 460	Time Series	3	0	3
FIN 320	Investments	3	0	3	FIN 470	Financial Eng.	3	0	3
AS 381	Actuarial Contingencies I	3	0	3	AS 482	Actuarial Contingencies II	3	0	3
AS 388	Actuarial Science Problem Lab II	0	1	1	AS 483	Actuarial Risk Theory and Credibility	3	0	3
STAT 416	Stochastic Processes for Actuaries	3	0	3					

Total credit hours: 17 1 18

Summer Session

| AS 350 | Begin Cooperative Work | 0 | 0 | 0 | | | | | |

Total credit hours: 18 0 18

Fourth Year (Senior)

AS 351	Cooperative Work	0	0	9	XXX	Free Elective I	3	0	3
AS 351									
AS 351									
AS 351									
AS 351									
AS 351									
IAS 418	Contemporary Financial Transactions in Islam	2	0	2					

Total credit hours required in Degree Program: 126
Department of Physics

Chairman: Dr. Abdullah Al-Sunaidi

Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Adel</td>
<td>Ayub</td>
<td>Khiari</td>
</tr>
<tr>
<td>Al-Aithan</td>
<td>Azadul Islam</td>
<td>Kunwar</td>
</tr>
<tr>
<td>Al-Amoudi</td>
<td>Bahlouli</td>
<td>Maalej</td>
</tr>
<tr>
<td>Al-Basheer</td>
<td>Dastageer</td>
<td>Mekki, A</td>
</tr>
<tr>
<td>Al-Jalal</td>
<td>Dwaikat</td>
<td>Mekki, M</td>
</tr>
<tr>
<td>Al-Karmi</td>
<td>El-Saïd</td>
<td>Nagadi</td>
</tr>
<tr>
<td>Al-Kuhaili</td>
<td>Faiz</td>
<td>Naqvi</td>
</tr>
<tr>
<td>Al-Marzoug</td>
<td>Gasmí</td>
<td>Nasser</td>
</tr>
<tr>
<td>Al-Matouq</td>
<td>Ghannam</td>
<td>Raashid</td>
</tr>
<tr>
<td>Al-Ohali</td>
<td>Gondal</td>
<td>Rao</td>
</tr>
<tr>
<td>Al-Sadah</td>
<td>Haider</td>
<td>Salem</td>
</tr>
<tr>
<td>Al-Shukri</td>
<td>Harrabi</td>
<td>Fazal Urrehman</td>
</tr>
<tr>
<td>Al-Sunaidi</td>
<td>Hrahshesh</td>
<td>Yamani</td>
</tr>
<tr>
<td>Al-Zahrani</td>
<td>Khattak</td>
<td>Ziq</td>
</tr>
</tbody>
</table>
Introduction

Physics deals with the study of natural phenomena originating from matter, motion, and energy. It represents, therefore, the foundation of all scientific, technological and engineering disciplines. The main purpose of physics is to understand and describe the apparent complexities of nature with as few unifying concepts as possible.

The teaching efforts of the Physics Department at the undergraduate level have two main objectives:

• to provide science and engineering students with the basic knowledge of physics principles necessary for their respective studies; and
• to provide advanced and specialized training for students who seek a deeper understanding of the physical world.

The first objective is met by the Department’s offering of a series of introductory physics courses, and the second is met by providing an advanced program leading to a bachelor’s degree.

A student enrolled in the bachelor’s degree program will not only become familiar with basic physics principles and applications, but will also study the underlying fundamental concepts of the structure of matter and the nature of the universe. In addition, a Physics graduate is well prepared for a career in any one of the Kingdom’s rapidly expanding technological sectors and for possible advanced study either at home or abroad.

Vision

The physics department aspires to be one of the leading departments in teaching, research, and community services.

Mission

The Physics Department is committed to provide the best education possible in basic and applied physics. It strives to insure high quality teaching and research, valuable services to the community, and effective contribution to the development of the country.

Goals

• Provide solid general physics course instruction
• Provide high quality education and training to undergraduate and graduate physics majors to prepare them for their future careers
• Conduct basic and applied physics research
• Provide consulting, short courses, training, outreach activities and community services

Strategy

• Excel in teaching by maintaining rigorous course curricula, using sound teaching methods, continuously assessing the program and making necessary improvements
• Prepare physics students for successful careers by instilling in them the required physics knowledge, skills and work ethics through close interaction with the faculty and involvement in physics projects
• Provide resources and opportunities for faculty to enhance their skills, teaching and research abilities to maintain a high level of performance
• Support and promote collaboration between faculty members, with other departments, and with industry in interdisciplinary research
• Identify and provide relevant services to the community
Requirements for the B.S. Degree in Physics

Each student majoring in Physics must complete the following curriculum:

(a) General Education Requirements (61 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>CHEM 101, 102</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>ICS 101</td>
</tr>
<tr>
<td>English</td>
<td>ENGL 101, 102, 214</td>
</tr>
<tr>
<td>Islamic & Arabic Studies</td>
<td>IAS 101, 111, 201, 212, 301, 322, 4xx</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MATH 101, 102, 201, 202</td>
</tr>
<tr>
<td>Physics</td>
<td>PHYS 101, 102</td>
</tr>
<tr>
<td>Physical Education</td>
<td>PE 101, 102</td>
</tr>
<tr>
<td>General Studies</td>
<td>GS xxx</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
</tr>
</tbody>
</table>

(b) Core Courses (34 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optics & Modern Physics</td>
<td>PHYS 211, 212</td>
</tr>
<tr>
<td>Classical Mechanics I</td>
<td>PHYS 301</td>
</tr>
<tr>
<td>Experimental Physics</td>
<td>PHYS 303, 304, 403</td>
</tr>
<tr>
<td>Electricity & Magnetism</td>
<td>PHYS 305, 306</td>
</tr>
<tr>
<td>Quantum Mechanics</td>
<td>PHYS 401, 402</td>
</tr>
<tr>
<td>Physics Seminar</td>
<td>PHYS 409</td>
</tr>
<tr>
<td>Thermal & Statistical Physics</td>
<td>PHYS 430</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
</tr>
</tbody>
</table>

(c) Electives (27 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Electives</td>
<td>Two MATH xxx Courses</td>
</tr>
<tr>
<td>Free Electives (at least 6 credit hours should be from outside the program)</td>
<td>Three XXX xxx Courses</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

(d) Summer Training (2 credit hours)

Students are required to spend one summer working in industry prior to the term in which they expect to graduate. They will be required to write a report and present it in a seminar at the Department.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Training</td>
<td>PHYS 399</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
</tr>
</tbody>
</table>

The total number of credit hours required is **124**
Physics Curriculum

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 01-xx</td>
<td>Prep. English I (First Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 02-xx</td>
<td>Prep. English II (Second Quarter)</td>
<td>15</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>MATH 001</td>
<td>Prep. Math I</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>PYP 001</td>
<td>Prep. Physical Science</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PYP 003</td>
<td>University Study Skills</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PE 001</td>
<td>Prep. Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

20 10 16

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 101</td>
<td>General Chemistry I</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>Intro. to Acad. Discourse</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>MATH 101</td>
<td>Calculus I</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PE 101</td>
<td>Health and Physical Educ. I</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 101</td>
<td>General Physics I</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

15 9 18

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>GS xxx</td>
<td>GS Elective</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 301</td>
<td>Classical Mechanics I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 303</td>
<td>Experimental Physics I</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MATH xxx</td>
<td>MATH Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 305</td>
<td>Electricity and Magnetism I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

16 3 17

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Comm. Skills</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 402</td>
<td>Quantum Mechanics and Applications II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 403</td>
<td>Senior Physics Laboratory</td>
<td>0</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>PHYS xxx</td>
<td>PHYS Elective I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 409</td>
<td>Physics Seminar</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 430</td>
<td>Thermal and Statistical Physics</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

13 6 15

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS 322</td>
<td>Professional Ethics</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 304</td>
<td>Experimental Physics II</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 306</td>
<td>Electricity and Magnetism II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Free Elective II</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 401</td>
<td>Quantum Mechanics and Applications I</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>XXX xxx</td>
<td>Free Elective III</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 399</td>
<td>Summer Training</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

12 3 13

<table>
<thead>
<tr>
<th>COURSE</th>
<th>TITLE</th>
<th>LT</th>
<th>LB</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS Elective</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>PHYS Elective II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS Elective III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PHYS Elective IV</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

14 0 14

Total credit hours required in the Degree Program: 124
ACADEMIC COURSES
KFUPM COURSE ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Course Name</th>
<th>Acronym</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT</td>
<td>Accounting</td>
<td>GS</td>
<td>General Studies</td>
</tr>
<tr>
<td>AE</td>
<td>Aerospace Engineering</td>
<td>HRM</td>
<td>Human Resources Management</td>
</tr>
<tr>
<td>ARC</td>
<td>Architecture</td>
<td>IAS</td>
<td>Islamic and Arabic Studies</td>
</tr>
<tr>
<td>ARE</td>
<td>Architectural Engineering</td>
<td>ICS</td>
<td>Information and Computer Science</td>
</tr>
<tr>
<td>AS</td>
<td>Actuarial Sciences</td>
<td>ISE</td>
<td>Industrial and Systems Engineering</td>
</tr>
<tr>
<td>BIOL</td>
<td>Biology</td>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>CE</td>
<td>Civil and Environmental Engineering</td>
<td>ME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>CHE</td>
<td>Chemical Engineering</td>
<td>MGT</td>
<td>Management</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry</td>
<td>MIS</td>
<td>Management Information Systems</td>
</tr>
<tr>
<td>CISE</td>
<td>Control and Instrumentation Systems Engineering</td>
<td>MKT</td>
<td>Marketing</td>
</tr>
<tr>
<td>COE</td>
<td>Computer Engineering</td>
<td>OM</td>
<td>Operations Management</td>
</tr>
<tr>
<td>CP</td>
<td>City Planning</td>
<td>PE</td>
<td>Physical Education</td>
</tr>
<tr>
<td>ECON</td>
<td>Economy</td>
<td>PETE</td>
<td>Petroleum Engineering</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>PHYS</td>
<td>Physics</td>
</tr>
<tr>
<td>ENGL</td>
<td>English</td>
<td>PYP</td>
<td>Preparatory Year Program</td>
</tr>
<tr>
<td>FIN</td>
<td>Finance</td>
<td>STAT</td>
<td>Statistics</td>
</tr>
<tr>
<td>GEOL</td>
<td>Geology</td>
<td>SWE</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>GEOP</td>
<td>Geophysics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

- The parenthesized numerals, such as (3-3-4) in the following course descriptions indicate the weekly lecture hours, the weekly laboratory hours, and the credit hours for each course, respectively.

- Prerequisites/Co-requisites are separated by commas. The following examples show how lists of prerequisites/co-requisites should be interpreted.

Example 1: The prerequisites of CE 230 written as “CE 201, MATH 102” should be interpreted as: A student may take CE 230 if he has already taken both CE 201 and Math 102.

Example 2: The prerequisites of MATH 301 written as “MATH 202 or MATH 260” should be interpreted as: A student may take MATH 301 if he has already taken either Math 202 or Math 260.

Example 3: The prerequisites of ME 322 “CE 101 or ME 210, ME 216, ME 217” should be interpreted as: A student may take ME 322 if he has already taken all the courses in any of the following two combinations:
 - CE 101 and ME 216 and ME 217
 - ME 210 and ME 216 and ME 217

Example 4: The prerequisites of ME 410 “(ME 216 and ME 217) or ME 205” should be interpreted as: A student may take ME 410 if he has already taken all the courses in any of the following two combinations:
 - ME 216 and ME 217
 - ME 205

- Additional notes/restrictions, if any, are indicated at the end of course description.
ACCOUNTING

ACCT 110 Introduction to Financial Accounting (3-0-3)
Uses, strengths, and weaknesses of financial reporting. Preparation and analysis of financial statements of a business enterprise. Overview of generally accepted accounting principles as they relate to the recognition of revenues and expenses, and the valuation of assets and liabilities. Ethics in accounting in the preparation and presentation of financial statements.

ACCT 210 Introduction to Managerial Accounting (3-0-3)
Uses of accounting information for managerial decision making to aid planning and control activities of managers in business enterprises. Methods for determining the costs of products and services, cost behavior analysis, assessing product and project profitability, cost-volume-profit analysis, budgeting, cost control using standard costing and variance analysis.
Prerequisite: ACCT 110

ACCT 300 Accounting Information Systems (2-2-3)
The principles and concepts of providing information support for managerial activities in the functional areas of logistics, manufacturing, marketing, human resources, and finance. Concepts related to internal control in manual and computerized accounting systems. Analysis, design, and implementation of accounting systems with emphasis on decision support systems, expert systems, and networked systems. Utilization of basic accounting software packages, and exposure to ERP systems.
Prerequisite: ACCT 210

ACCT 301 Intermediate Accounting I (3-0-3)
Objectives of financial statements and their preparation. In-depth study of generally accepted accounting principles with concentration on the valuation techniques and procedures underlying the financial statements. Conceptual and theoretical issues that face the accounting profession. Accounting for current assets and current liabilities. Accounting for acquisition and disposition of plant assets including depreciation and depletion. Accounting for intangible assets. Study of ethics in accounting.
Prerequisite: ACCT 210

ACCT 302 Intermediate Accounting II (3-0-3)
Prerequisite: ACCT 301

ACCT 304 International Accounting (3-0-3)
multinational operations. Accounting and Economic Development. Accounting for multinational corporate responsibility.
Prerequisite: ACCT 301

ACCT 305 Accounting for Governmental and Non-Profit Entities (3-0-3)
Accounting concepts and techniques for governmental operations including fund accounting. Financial reporting and disclosure problems of governmental and non-profit organizations. Budgetary control procedures for governmental and non-profit entities such as universities, hospitals, and charities.
Prerequisite: ACCT 210

ACCT 307 Islamic Financial Jurisprudence (3-0-3)
Fundamentals of commercial law, the Islamic principles of property rights, contracts, capital, types of ownership, sale contracts, commercial papers and bankruptcy. Secured transactions, and concepts of agency, estate, and trust under Islamic Sharia Law.

ACCT 311 Auditing (3-0-3)
Generally accepted auditing standards and procedures used by the external auditor. Professional ethics, professional responsibility, and legal liability of the external auditor. Audit concepts such as auditor's independence, fair presentation, and due professional care. Internal control evaluation and design of audit programs; collection of audit evidence including statistical sampling and analytical review; evaluation of audit evidence; arriving at audit opinions. Development of working papers and audit reports. Assurance services. Uses of the computer as an audit tool. Utilization of generalized audit software packages. Information Technology and the audit process.
Prerequisite: ACCT 300

ACCT 314 Computer Control and Audit (3-0-3)
Auditing of computer-based information systems. Audit environment and information systems controls. Theory of internal control and the application of audit procedures in a computerized environment. Techniques for evaluating applications, data integrity, general operations, security, systems software and maintenance.
Prerequisite: ACCT 300

ACCT 350 Begin Cooperative Work (0-0-0)
See contents in ACCT 351.
Prerequisite: Same as in ACCT 351

ACCT 351 Cooperative Work (0-0-6)
Comprehensive period for accounting practical training in a selected economic organization. The Department of Accounting and Management Information Systems approves the training program and monitors the student's progress during his co-op period. Under the supervision of an accounting faculty member or a faculty member in a related discipline, the student writes an analytical report about his co-op experience.
Prerequisite: ENGL 214, at least 85 credit hours

ACCT 352 End Cooperative Work (0-0-0)
See contents in ACCT 351.
Prerequisite: Same as in ACCT 351
ACCT 403 Advanced Accounting (3-0-3)
Accounting principles and procedures related to business combinations. Methods and
techniques for preparing consolidated financial statements. Receiverships and statement
of affairs. Accounting for formation, operation, and liquidation of partnerships.
Accounting for branches, consignments, and joint-ventures. Ethics in accounting.
Prerequisite: ACCT 302

ACCT 405 Accounting Theory & Research (3-0-3)
The development and structure of accounting theory, principles, and practices
applicable to business organizations. Objectives of financial reporting and disclosure.
Models of income determination and balance sheet valuations including historical cost,
replacement cost, exit values, and discounted cash flows. Controversial accounting
treatments and their effect of the usefulness and reliability of financial statements. The
pronouncements of professional accounting bodies. Study of contemporary issues in
financial accounting.
Prerequisite: ACCT 301

ACCT 406 Internal Auditing (3-0-3)
Development and evolution of the internal auditing profession; scope and objectives of
internal auditing; standards of professional practice; control concepts; techniques of
internal auditing; internal auditing and internal control; the internal audit process;
reporting and communication of internal audit findings; administration of internal audit
departments and quality assurance; internal auditor's independence; relationships
between internal and external auditors and audit committees; ethics in internal auditing;
financial audits; operational, efficiency, and management audits; compliance audits and
computer applications in internal auditing.
Prerequisite: ACCT 210

ACCT 407 Financial Statement Analysis (3-0-3)
Structured analysis of financial statements; forecasting of income and cash flows; pro-
forma financial statements; firm valuation using discounted cash flows and discounted
residual income methods; comparative valuation analysis; credit analysis. A study of
the potential effects of Generally Accepted Accounting Principles on financial
statement analysis and valuation techniques and outcomes. Concepts of earnings quality
and management of earnings.
Prerequisite: ACCT 210

ACCT 408 Zakat and Business Tax Accounting (3-0-3)
The fundamentals, rules, and objectives of taxation under Saudi Arabian tax and zakat
regulations. Skills necessary to compute and assess income tax and zakat base for
business entities. Business income tax and zakat rates. The Department of Zakat and
Income Tax functions.
Prerequisite: ACCT 210

ACCT 410 Cost Accounting (3-0-3)
Contemporary topics in strategic cost management through and understanding of the
underlying concepts and fundamental techniques involved in cost accounting for
manufacturing and service companies. How cost management systems, with their
performance evaluation and reward systems, encourage efforts to achieve an
organization’s strategic goals. Activity-based costing; decision making; pricing; joint
and common cost allocation; cost of quality and continuous improvement; responsibility accounting, performance measurement and reward systems; transfer pricing and capital investment decisions.

Prerequisite: ACCT 210

ACCT 411 Cost Management & Cost Control
(3-0-3)

Prerequisite: ACCT 410

ACCT 420 Petroleum Accounting
(3-0-3)
Accounting practices in the petroleum industry. Overview of the industry with a detailed focus on certain aspects of the Successful Efforts the Full Cost Methods of accounting. Oil and gas reserves, the standardized measure, supplemental disclosures, and depreciation, depletion, and amortization of exploration and development costs. Financial statement presentation issues will be analyzed to gain an appreciation for the unique impact of generally accepted accounting principles in the petroleum industry.

Prerequisite: ACCT 302

ACCT 499 Special Topics in Accounting
(3-0-3)
Contemporary developments in financial and managerial accounting, such as corporate financial reporting, strategic management accounting, management control systems and regulation of financial reporting.

Prerequisite: ACCT 210
AE 220 Introduction to Aerospace Engineering (3-0-3)
Introduction to overview of aerospace engineering, airplane, and the atmosphere. Basic aerodynamics and gas dynamics of incompressible flows, airfoils and wings, lift, drag, moments, circulation, boundary layers, and skin friction. Performance of aircraft, level flight, climb, range, endurance, and take-off and landing. Introduction to stability and control; structures and materials; propulsion of flight vehicles; and space flight (astronautics).
Prerequisite: PHYS 102

AE 240 AE Design (2-0-2)
This course is a sophomore level design course that introduces the basic elements of engineering design with emphasis on teamwork and communication skills. The theme of the course includes design, build and test components associated with a specific aerospace related design project. The students are taught the theory and design techniques related to the project. The students are required to accomplish the design project in teams and communicate their preliminary results in verbal (presentation) and written form (report) by mid semester. The remaining half of the semester is devoted to building, testing and evaluating the design. The course culminates with a final design presentation and a final design report.
Prerequisite: MATH 201, PHYS 102

AE 313 AE Systems and Control (2-3-3)
Introduction to automatic flight control systems, Modeling and analysis of linear dynamic systems; Feedback control system design using root-locus and frequency response techniques; Introduction to modern control theory and pole placement technique; Aerospace control applications.
Prerequisite: ME 201, MATH 202 or equivalent

AE 325 Gas Dynamics I (3-0-3)
Fundamentals of compressible fluid flow (gas dynamics) in relation to effects of area change (nozzles and diffusers), friction and heat interaction (Fanno, Rayleigh line, and isothermal flow), combustion waves (deflagration, explosion, and detonation waves), normal and oblique shock waves and their effects on flow properties (extended diffusers and supersonic airfoils). Applications to flow through pipelines, subsonic, sonic, and supersonic flights, turbo machinery and combustion.
Prerequisite: AE 220

AE 328 Flight Structures I (3-0-3)
Statistically determinate and indeterminate structures; aerodynamics and inertia loads, load factors, stresses in beams, shear flow in thin webs, closed section box beams; deflection analysis of structural systems; introduction to buckling; application to wing and fuselage stress analysis; Rayleight-Ritz and introduction to the finite element method; elasticity of structures stress-strain relationships; vehicle materials; fatigue; strength-weight comparisons of materials; and sandwich construction including composite materials.
Prerequisite: CE 203, MATH 201

AE 333 Aerodynamics I (3-0-3)
General fluid flow equation, potential parallel flow theory with some applications of aerodynamics, thin airfoil theory and finite wing in incompressible inviscid flow. Introduction to viscous flow and boundary layers.

Prerequisite: AE 220

AE 350 Begin Cooperative Work

See contents in AE 351.

Prerequisite: Same as in AE 351

AE 351 Cooperative Work

A period of 28 weeks of industrial employment for Aerospace Engineering students to work in appropriate industries or firms. Students are evaluated on their performance on the job and are required to submit an extensive formal report on their experience.

Prerequisite: ENGL 214, AE 220, Approval of the Department

AE 352 End Cooperative Work

See contents in AE 351.

Prerequisite: Same as in AE 351

AE 355 Experimental & Computational Methods for Aerospace Engineering

Experimental data analysis using statistics formulae, probability, and reliability; Laboratory experiments by using the basic instruments for measuring displacement, area, pressure, flow, temperature, force, torque, and vibration; Usage of data acquisition and processing devices in the experiments; Solution of systems of algebraic equations; Numerical solution of ordinary differential equations; Computer aided aerospace design and analysis; Introduction to finite difference methods and computational fluid dynamics.

Prerequisite: AE 220, CISE 301

AE 399 Summer Training

A continuous period of 8 weeks of summer training spent in the industry working in any of the fields of Aerospace Engineering. The training should be carried out in an organization with an interest in one or more of these fields. On completion of the program, the student is required to submit a formal written report of his work.

Prerequisite: ENGL 214, Approval of the Department

AE 401 Aerospace System Maintenance

Aviation maintenance regulation, records, and documents; servicing procedures and ground operation, aviation material. Hydraulic, electrical avionic, ignition, environmental, and fuel systems, engine overhaul. Installation and repair; heat exchangers; inspection testing; weight and balance computation. Aerospace maintenance and its management with economical considerations; including visits to the field.

Prerequisite: AE 220

AE 402 Aerospace Avionics

Theory of operation and utilization of various types of avionic equipment. Radio wave propagation, VHF communication, and VOR navigation system; instrument landing systems; automatic direction finder; distance measuring equipment; transponders. Weather radar and area navigation systems. Avionic system integration and flight control. Avionics equipment troubleshooting and repair; including visits to the field.
Prerequisite: EE 204 or equivalent

AE 403 Aerospace Materials (3-0-3)
Structure of materials; Mechanical properties of materials; Diffusion and heat treatment; Solidification and strengthening; Aluminum alloys, titanium alloys, nickel alloys, super alloys and their applications in aircraft structure and engine; Composite and ceramic material; Environmental effects and corrosion; Material behavior and selection processes for aerospace engineering systems applications. Visit to the field.
Prerequisite: Senior Standing

AE 410 Astronautics (3-0-3)
Solar system; rocket propulsion and staging of power trajectories; dynamics and control of spacecraft; satellite altitude control; astrodynamics; lunar and interplanetary trajectories; re-entry and heating consideration; aerospace plane.
Prerequisite: PHYS 102

AE 411 Senior Design Project I (1-0-1)
A course that integrates various components of the curriculum in comprehensive engineering experience so that the basic sciences, mathematics, and engineering sciences which the student has learned in his freshman-to-senior years of study can be applied. It considers design of a complete project or system including establishment of objectives and criteria, formulation of the problem statements, preparation of specifications, consideration of alternative solutions, feasibility considerations, and detailed engineering designs. The design should take into consideration appropriate constraints such as economic factors, safety, reliability, ethics and environmental and social impact. Submission of a written report is an essential requirement for completion of the course. Team design projects, where appropriate, are highly encouraged.
Prerequisite: Senior Standing, Approval of the Department.

AE 412 Senior Design Project II (2-0-2)
Continuation and completion of project started in AE 411. Public oral presentation and submission of final written report of the design project are essential requirements for the completion of the course.
Prerequisite: AE 411

AE 414 Flight and Air Traffic Control (3-0-3)
Introduction to air traffic control system; Navigation, communication and surveillance systems; Air traffic control procedures and organizations; Air traffic control at airport operation area; Non-radar and radar separation techniques; Human factors in air traffic control operations; Air traffic safety and management; Field project.
Prerequisite: Senior Standing

AE 415 Flight and Aviation Safety (3-0-3)
Regulatory organizations and their responsibilities; Basics of safety; Review of aviation safety statistics; Human factor in flight and ground safety; Aircraft safety systems; Principles of accident investigation; Safety management system; Accident prevention; Risk management; Aviation and airport securities.
Prerequisite: Senior Standing

AE 416 Flight and Aviation Management (3-0-3)
Air transportation regulations; Economic characteristics of airlines; Airline organization and management. Functional departments of airlines; Flight scheduling and fleet planning. Airline pricing strategies and airline marketing; Freight and cargo operations; Airline financing; Airport design and operations; Airport planning and administration; Field project.

Prerequisite: Senior Standing

AE 417 Flight and Aviation Law (3-0-3)
Legal environment of aviation; Federal Aviation Regulations; Basic principles of liability; Aircraft accident investigation law; Airline liability; Aircraft transactions; Airport and airspace law; Aviation security laws; International laws and treaties affecting aviation; Case studies.
Prerequisite: Senior Standing

AE 418 Flight and Aviation Economics (3-0-3)
The aviation industry; International regulatory framework; Airline cost structures; Demand of the airline service; Airline pricing and revenue; Air cargo; Airport economics; Airport operations; Economics of charter operation; Financial challenges facing the air transport industry; Case studies.
Prerequisite: Senior Standing

AE 420 Aerospace Engineering Lab I (0-3-1)
Laboratory experiments related to aerospace fields including wind tunnel and other equipment testing to demonstrate various phenomena, such as pressure distribution, lift, and drag measurement on different bodies. The course will include three parts, i.e., Fluid Dynamics, Aerodynamics and Gas Dynamics, and Propulsion. The course will utilize statistics, probability, and reliability basics with the fundamental principles of instrumentation.
Prerequisite: AE 220

AE 421 Aerospace Engineering Lab II (0-3-1)
Laboratory experiments related to two parts of aerospace flight: flight structures and materials; and flight dynamics and control, including demonstration and familiarization with basic components of the airframe construction (e.g., landing gear mechanism, aircraft wing, part of fuselage), and flight simulator model performance stability (e.g., lift and drag measurement and neutral point location and trim curves). The course includes films and visits to the industries in aerospace fields. The course utilizes statistical and reliability techniques for instrument data analysis.
Prerequisite: AE 220

AE 422 Flight Propulsion I (3-0-3)
Prerequisite: ME 203, ME 311

AE 426 Flight Dynamics I (3-0-3)
Flight performance. Statics and dynamic flight stability and control of flight vehicle. Rocket trajectories and satellite orbits.

Prerequisite: AE 220

AE 427 Aerospace System Design
(3-0-3)
This is an integrated aerospace design course which include theory, background, and methods of aerospace system (e.g. I aircraft, rockets, and spacecraft) design; including requirements and specifications of design, integration of aerodynamics, structure, propulsion, and flight dynamics and control; performance analysis and prediction; and complete project of aerospace system.

Prerequisite: AE 220

AE 428 Flight Structures II
(3-0-3)
Theory and analysis of structures of flight vehicles, plate theory, thermal stresses, buckling and failure, introduction to structural dynamics; analysis of aeroelastic phenomena and flutter; composite materials; crack-growth calculation and wear out models.

Prerequisite: AE 328 or equivalent

AE 429 Gas Dynamics II
(3-0-3)
Linearized flow; method of characteristics, conical flow. Experimental methods in gas dynamics.

Prerequisite: AE 325 or equivalent

AE 433 Aerodynamics II
(3-0-3)
Viscous flow and Navier-stokes equations; laminar and turbulent boundary layer; transition flow; unsteady flow; flow instabilities. High speed aerodynamics and aerodynamic heating. Introduction to hypersonic flow. Experimental methods in aerodynamics.

Prerequisite: AE 333 or equivalent

AE 442 Flight Propulsion II
(3-0-3)
Rocket and power plants performance, dynamics, and control of turbo-engines. RAM/SCRAM jets engines. Blades element theory for propellers; turbo-compressors, turbines; chemical, nuclear, and electrical propulsion rockets. Introduction to space propulsion system.

Prerequisite: AE 422 or equivalent

AE 446 Flight Dynamics II
(3-0-3)
Fundamentals of atmospheric flight; stability and control analysis; matrix approach to the general motion and transfer function; elastic flight vehicle; automatic flight control. Introduction to space flight dynamics; application to missile, spacecraft, and satellite attitude controls.

Prerequisite: AE 426 or equivalent

AE 448 Fundamentals of Helicopter
(3-0-3)
Introduction to helicopters; Its various configurations and rotor types; Hovering theory; Vertical and forward flight performance analysis; Dynamics and control of rotor; Helicopter stability in hovering and forward flight; Helicopter vibration analysis during flight; Design of basic helicopter components.

Prerequisite: ME 201, MATH 202 or equivalent
AE 499 Special Topics in Aerospace Engineering (3-0-3)
Topics are selected from the broad area of Aerospace Engineering to provide students with the knowledge of recent advancements in the analysis and design in Aerospace Engineering and in aviation including optimization of Aerospace System Design, Aerodynamics, Gas Dynamics, Aerospace Structures and Materials, Flight Dynamics and Control, Propulsion, Helicopter Flight, Avionics, Navigation and Guidance, Aircraft Maintenance, Flight and Aviation Safety, Air Traffic Control, Aviation Law, Astronautics, and other related fields such as Marine Engineering.
Prerequisite: To be set by the Department.
ARC 100 Architectural Graphics (0-10-5)
This is a foundation course introducing the processes and techniques of graphic thinking. The course develops basic skills, ideas and the presentation methods of simple architectural exercises through a sequence of project types emphasizing 2D and 3D thinking. The importance of sketching in architecture is emphasized. The course bridges the gap between having no graphic communication skills and having the first level of skills required for the succeeding design studio.

ARC 101 Design Studio I: Design Principles (0-10-5)
The objectives of this course are those of improving graphic communication and initiation into design. Elementary projects are carried out which explore spatial thinking in basic structural forms and shapes. This course introduces the architectural design process, including issues of concept making, and design development.
Prerequisite: ARC 100

ARC 110 History of Architecture I (2-0-2)
This course is an introduction to the chronological development of architecture from pre-history, to Egyptian, Greek, and Byzantine, highlighting the development of structural systems, materials, construction and other building systems. Emphasis is on the Middle and Near East. The astern Architectures of the Indian, Chinese and Japanese civilizations are also covered. The focus of this course are those of developing an understanding for material use, and of creating an appreciation as to the factors that contribute to the development of the unique architecture of the various cultures.

ARC 112 History of Architecture II (2-0-2)
The first part of this course covers a chronological development of architecture from the Early Christian period through the Gothic, to the Renaissance and Baroque periods. The second part studies architectural development from the Baroque period though the Industrial Revolution to the Modern movements.
Prerequisite: ARC 110

ARC 124 Computer Aided Architectural Design (2-3-3)
Introduction to the techniques and applications of computer aided design in the context of architectural design. Emphases in the use of computer to seek, produce, manage, and exchange graphical information in the design process. Topics include introduction to personal computing in an office environment, two-dimensional editing and modifying techniques, standard layering system, associative dimensioning, blocks and external referencing system, layout management, CAD and the Internet. Introduction to computer programming using AutoLisp to automate drafting functions.
Note: Not to be taken for credit with ARE 221

ARC 132 Man and Built Environment (2-0-2)
This course constitutes an investigation into the design factors necessary for human living. It looks at the design of the built environment with emphasis on human needs and how the social sciences can contribute to architectural design and practice. The influence of other factors such as climate, materials, technology, and physical context are considered, and design principles are formulated from cross-cultural examples of world architecture.
ARC 202 Design Studio II: Space & Order (0-10-5)

This course continues the study of the development of design principles from Design Studio 1 (ARC 101). Space definition is supplemented with human, cultural and localized contextual needs. Small and minimally complex projects explore functional, aesthetic and structural issues.

Prerequisite: ARC 101

ARC 203 Design Studio III: Site, Context & Form (0-10-5)

Intermediate design scale is explored in this course, utilizing analytical approaches to problem solving, sketching and 3-D modeling. Emphasis is on site design, programming, materials and technology.

Prerequisite: ARC 202

ARC 210 History of Architecture III (2-0-2)

The course covers the chronological development of Islamic civilization and architecture from Umayyad in Syria and Iraq, through the classical and late classical periods in Spain, North Africa, the Middle East, including Mesopotamia, the Ottoman empire, Persia and the Mughal Empire. The influences of Islamic architecture on other architectural styles of the same periods and vice versa are studied. The course covers the importance of Islamic art, geometry, calligraphy and variations in cultural attitudes in architectural styles. The development and evaluation of contemporary Islamic architecture is introduced.

Prerequisite: ARC 110

ARC 221 Structures in Architecture I (3-0-3)

This course studies the history of shelters and the development and philosophy of structural systems. It is an introduction to different structural systems and their advantages; including load transfer mechanisms; their equilibrium and their application. The quantitative analysis of simple determinate systems, such as trusses, frames and beams; and the computation of axial and bending stress in simple members are covered.

Prerequisite: PHYS 101 or PHYS 133, Instructor Approval for Non-ARC Students

ARC 222 Structures in Architecture II (3-0-3)

This course provides a continuation in the study of structural systems. Emphasis is on analysis and design. Analysis and design of in-determinate structural systems in wood and steel, along with an introduction to concrete and masonry structural systems are covered. Computers are introduced as a tool in structural analysis and design at this level.

Prerequisite: ARC 221

ARC 225 Virtual Reality in Architecture (2-3-3)

Computer visualization process that includes: three dimensional modeling, analytical rendering, and animation, focusing on the description of architectural design. Digital video; capturing editing video audio clips. Virtual Reality in architecture; terminology, characteristics, environment, and applications. Virtual Reality Modeling Language. Students will apply the above tools to a design studio project. This course includes exposure to a broad spectrum of modeling, and presentation software such as; AutoCAD, 3D max Viz, Ulead Media Studio.

Prerequisite: ARC 124 or Instructor Approval

ARC 251 Introduction to Urban Design Concepts (2-0-2)
This course is an introduction to the history and theories of urban spatial design. Approaches to the development of urban spaces throughout history are discussed, including Greek, Roman, Renaissance, Islamic, Baroque, Utopian, and Modern post-industrial concepts. Influential urban design theories and trends in modern times, their implications and feasibility, are studied. Urban social behavior and the psychological effects of urban space on its users are also studied.

ARC 281 Architecture of Saudi Arabia (2-0-2)
Emphasis in this course is on developing a good understanding of the traditional architecture of all the regions of Saudi Arabia. Focus is on the need to learn important aspects about the fast-vanishing traditional architecture of the region. Historic preservation is discussed.

ARC 300 Workshop/Summer Internship (2-0-2)
This workshop provides experience in the practical application of core subjects in a new or on-going research project. It provides 'in house' training with instruction in the students' intended professional major. Opportunities are offered for experimentation with innovative materials, construction and structural elements.
Note: The workshop is an acceptable substitute for the summer internship
Prerequisite: Junior Standing

ARC 304 Design Studio IV: Analysis & Synthesis (0-12-6)
This studio focuses on building types that exhibit complexity and challenge. Project designs must show clear understanding of structural, mechanical and construction systems, along with space planning. Architectural programming is introduced.
Prerequisite: ARC 203

ARC 305 Design Studio V: Virtual Design Studio (0-12-6)
The building types explored in this studio have greater complexity of function. In addition, emphasis is placed on building envelope in terms of form, massing, articulation and fenestration. Use of computer-aided design is a part of the design exploration.
Prerequisite: ARC 304, ARC 225

ARC 313 Theory of Architecture I (2-0-2)
This course explores the path of the principal architectural thoughts and events which led to the development of major architectural and town planning theories; starting with Vitruvius’ “ten Books of Architecture”, to the European Art Nouveau movement (1890-1910) and the early influence of reinforced concrete. Concepts of architectural space, form and vocabulary, as well as major town planning concepts and theories from these periods are discussed and critically analyzed.
Prerequisite: ARC 210

ARC 314 Theory of Architecture II (2-0-2)
The course outlines the theoretical foundations of 20th Century trends in architecture, in the light of worldwide historical developments and their social and technological influences. The focus of the course is on the Modern Movement and recent developments leading to the Post-Modern aspects of architectural aesthetics.
Prerequisite: ARC 313

ARC 315 Perception, Geometry and Color in Architecture (2-0-2)
This course offers an understanding of perception and its application in transforming ideas into design and 3-D form. It is an introduction to the evolution of geometry in architecture and to primary elements such as line, plane, form, size direction and other ordering principles. The theories of color, and the interaction of color with its physical, visual and psychological aspects are included.

Prerequisite: Instructors Approval for Non-ARC Students

ARC 323 Structures in Architecture III (3-0-3)
This course is an introduction to the characteristics of reinforced concrete and to its analysis and design using codes, tables and charts. Aspects of material deterioration and design for durability are covered in the course. Emphasis is placed on the use of computer applications in both analysis and design.

Prerequisite: ARC 222

ARC 341 Freehand Drawings (1-3-2)
In this course students are taught how to see and how to quickly draw what they see thus improving their abilities to draw in three dimensions. The techniques of drawing are taught using various mediums, such as pencil, ink, and charcoal. The subject matter includes still-life and landscape drawing in the field, as well as “gesture drawing” drawing.

ARC 342 Computer Presentation Techniques (2-0-2)
Expanding the use of mixed media into the translation of ideas, this course brings practical presentation principles, layout and comprehensive media techniques to the field of graphic design. Computer software, using industry standard illustration, paint, and page layout, new technologies and traditional composition are addressed.

Prerequisite: ARC 124

ARC 343 Creative Design Workshop (1-3-2)
This is an advanced-level workshop covering creative thinking in design, using various media and methods of expression. The students are encouraged to develop innovative ideas and topics.

ARC 344 Architectural Photography (1-3-2)
This course covers fundamental information about the use of photographic materials in the environmental design professions. Subjects discussed include photographic films and papers, camera types, lighting and darkroom techniques. Included in the course program are architectural documentation, presentation and promotional use of photography. Reproduction techniques using Diazo material, offset printing, model photography and line printing are also discussed.

ARC 351 Specific Urban Design Workshop (1-3-2)
Application of traditional and modern urban design theories and methods constitutes the backbone of the course. Focus is on the solution of urban spatial problems and urban rehabilitation. Examination of case studies is undertaken at the scale of a district within the city. Action area projects are chosen from adjacent urban areas to allow easy accessibility for data collection and actual site analysis.

Prerequisite: ARC 251

ARC 353 Housing Policy and Design (2-0-2)
This course provides an introduction to housing theory, socio-economic aspects related to housing, alternative approaches to housing policy and housing problems in developing countries, with particular attention to traditional housing settlements in Saudi Arabia. Exploration of current issues in the formulation and implementation of housing programs is carried out. This covers an analysis of Housing Design, classification of housing types, data gathering on housing, neighborhood theory as a housing concept, design procedure of a housing community, structure of housing areas as a criteria for the design of housing, construction technologies, materials, costs, climatic conditions and code issues.

ARC 361 Introduction to Landscape Plants (1-3-2)
This course introduces basic principles of landscape architecture. Both landscape design processes and design methods are taught. This includes field study, and site analysis for the use of plants. Identification is made of native plants, factors of aridity, soil and types of irrigation systems suitable for Saudi Arabia. Emphasis is placed on the use of local plant materials.

ARC 362 Introduction to Landscape Design (1-3-2)
This course is an introduction to basic principles of landscape architectural design and techniques. Projects at the scale of site design, such as open spaces and building surrounds, are dealt with. This reinforces understanding of the optimum and correct use of land development, local plant materials and irrigation systems.

ARC 363 Introduction to Ecological Analysis (1-3-2)
This course covers the analysis of environmental factors, ecosystem functions, and ecosystem dynamics as they relate to decision-making for planning design. Environmental phenomena of Saudi Arabia, need controls, and counter measures are discussed.

ARC 364 Specific Open Spaces Design Workshop (1-3-2)
This workshop provides a focus on how landscape design and green spaces add vitality to community and city life. The workshop introduces students to the creative design of urban open spaces. Such open spaces are analyzed, where their potentials are explored with the intent of creating parks, outdoor recreation, toddler lots, picnic areas, ponds, walks and natural trails.

ARC 371 Introduction to Interior Architecture (2-0-2)
This course is an introduction to concepts of interior space, color and material selection, contract interiors and space planning methods. Course content covers discussion of marketing interior design services and methods. Sociological and psychological aspects of interior architecture are also presented.

ARC 372 Furnishing Design (1-3-2)
This is a survey course concerning materials, methods and manufacturing processes that are applied to interior furniture and fixture design. The course covers the analysis of custom and mass production costs and considers the benefits of durability, safety and human comfort. These factors are discussed with respect to various interior furnishings.

ARC 373 Commercial Interiors (1-3-2)
This course addresses commercial and institutional interiors. Space planning methodologies, life cycle costing, modular office systems and, materials selection are discussed. Office comfort, artificial illumination and day lighting are also considered.
ARC 374 History of Interior Architecture (2-0-2)
This course presents a survey of interior architecture throughout history. Emphasis is placed on the way historical periods are reflected through the use of interior colors, materials and finishes.

ARC 399 Summer Training (0-0-1)
This is a continuous period of 8 weeks of summer work in building design and construction industry, for gaining exposure and appreciation of the architectural profession. The writing of a field experience report is required. The report should emphasize duties assigned and completed during the period.
Prerequisite: Junior Standing, ENGL 214

ARC 400 Senior Project Preparation and Programming (2-0-2)
In addition to teaching the basic techniques of architectural programming, this course is designed to help the senior student to prepare his proposal for the final project in ARC 408. Topics include: Client objectives, Functional relationships, Facility space requirement development, Site development requirements, Site analysis, Prioritizing functions, Spatial restrictions and budget constraints. The student carries out research on his chosen building type and location, acquires the necessary approval based on the need for where it is planned for his project, visit the site and government offices to obtain the necessary maps, contour information, street locations and photographs. The student then writes a program for his project.
Corequisite: ARC 406

ARC 406 Design Studio VI: Comprehensive Design Project (0-12-6)
This studio emphasizes the comprehensive nature of architectural design. Assigned project programs relate to an urban context and a visit-able site. Experimenting with different solutions using knowledge of architectural theories and contemporary concepts of design, formulate concepts to a high level of practicality. This course is available to students of senior standing only.
Prerequisite: ARC 305

ARC 407 Construction Documents (0-6-3)
This course is setup to introduce concepts and methods of preparing construction documents for buildings. It provides a hands-on experience in preparing such documents. The course will emphasize the use of computer integrated database management systems, Intranet and Intranet methods for accessing, distributing and coordinating construction documents. Topics to be covered include; the graphic component: a coordinated set of drawings, plans, sections, elevations, graphic symbols, and details, required to graphically describe the project. The alphanumeric component: dimensions and annotations, tables, and schedules (doors, windows, and room finishes). Specifications, mostly text but sometimes supplemented with graphics, including bills of quantity or materials.
Prerequisite: ARC 124, ARE 212

ARC 408 Senior Project (0-14-7)
This studio begins with a presentation of the ARC-400 program document with clear indication of the intent and direction of emphasis. Having been reviewed and approved by a senior project committee, This project design is undertaken to its completion. The project
must exhibit a comprehensive mastery of architectural design, reflecting the knowledge and skills acquired during four years of study in architecture.

Prerequisite: ARC 400, ARC 406, Senior Standing

ARC 416 Specific Topics on Islamic Architecture (2-0-2)
In this course, the major developments in Islamic architecture are studied. The course concentrates either on a given period, a specific case study, or both in the rich and diversified traditions of Islamic architecture. At the discretion of the instructor, themes such as Al-Hamra Palace or Andalusian Islamic Architecture, form the focus and essence for the entire course.

Prerequisite: ARC 210

ARC 426 Professional Practice (3-0-3)
The course introduces knowledge required for a success career in architectural practice or employment. The course is divided into three parts. The first part discusses the training and role in society of architects. This covers academic and professional training; career choices, lives as professionals and professional ethics. The second part discusses the organization and management of architectural firms and covers firm formation and organization, marketing of services, management and dynamics. The last part deals with Project administration. It covers project conception and acquisition; project management; design services, parameters and documentation; and contract administration. The course highlights practices in Saudi Arabia and compares them with international practices.

Prerequisite: Junior Standing

ARC 435 Design Determinants for Arid Regions (2-0-2)
This course offers insights into design for arid regions. It covers analysis of natural conditions, climate, topography and water. Analytical criticism of existing buildings in arid regions is used to develop an understanding of the culture, construction technology, and materials of such regions. This also develops an appreciation for cultural, site and climatic conditions that prevail and determine the building-form.

ARC 442 Knowledge-Based Systems in Architecture (2-0-2)
This course presents an overview of the knowledge-Based Systems and their application in the field of architecture and environmental design. Fundamental concepts, as well as types of knowledge-Based systems are discussed. Case studies in the architectural application of these systems, issues of linking these systems to other information technologies such as CADD, Multimedia, Hypermedia and ontologies, are undertaken.

Prerequisite: ARC 124

ARC 449 Special Topics in Computer Aided Design (2-0-2)
The objective of this course is one of exploring emerging ideas in Computer Graphics and Information Technology Applications in the fields of architecture and design. It provides a forum for faculty and IT experts to share their research findings or professional experience in computer graphics with students. It also provides an opportunity for students to explore topics in Information Technology Applications that are of special interest to them individually. The specific content and format of the course varies with the topic and research interest of the faculty teaching it.

Prerequisite: ARC 124

ARC 453 Urban Design Theory (2-0-2)
This course is a critical analysis of the theories and current issues of urban spatial design. It examines city forms and patterns, and reviews utopian models. The emphasis is on the understanding of the physical, socio-cultural, economic and technological forces, and their role in shaping the urban environment.

Prerequisite: ARC 251

ARC 454 Methods of Urban Design Analysis
(2-0-2)
This course is concerned with 'Researching and analyzing urban form' to understand its elements and its underlying organizing principles. The purpose is to expose the students to the range of approaches available for urban form analysis and for understanding what makes a "good" city or urban area. Computer based analytical techniques and computer visualization and simulation technology will be emphasized.

Prerequisite: ARC 251

ARC 459 Special Topics in Urban Design
(2-0-2)
The objective of this course is one of exploring emerging ideas, concepts and policy intervention methods in urban design. The course provides a forum for faculty to share their research findings or professional experience in the field of urban design or to explore a new theory, method or techniques of urban design. Students with particular urban design interest may also explore them in this course. The specific content and format of the course varies with topic and research interest of the faculty teaching it.

Prerequisite: ARC 251

ARC 482 Socio-Cultural Factors in Design
(2-0-2)
This course is a study of behavioral concepts and socio-cultural aspects affecting the way man shapes his environment, and in turn is shaped by it. The course builds an understanding of human culture, attitudes, psychology, and the behavior of both individuals and groups. Selected social planning and design issues, technology and related research techniques are studied.

ARC 483 Architectural Conservation and Preservation
(2-0-2)
This course is an introduction to construction principles and materials employed in Saudi Architecture. Observation and examination of existing architectural examples in the form of their physical, historical, and cultural context, and their anatomy, both physical and conceptual make up the majority of the study. Development of skills in architectural design principles required for the conservation and preservation of "what is there" in architecture is also important.

ARC 489 Special Topics in Regional Architecture
(2-0-2)
The flexible content and format of the course offers opportunity to the student to explore much deeper into chosen areas and types of regional architecture. This exploration, however, should allow for the development of understanding in creating a link between the past, present and the future of regional architecture.
ARCHITECTURAL ENGINEERING

ARE 101 Architectural Graphics (0-6-2)
The course initially introduces the discipline of Architectural Engineering and the role of architectural Engineers in the process of building design, systems' integration, construction and operation. Graphical representation methods and techniques in architectural design and presentation are introduced. Drawing tools and materials; architectural drafting conventions; orthographic projections and views, their types and use in building presentation. Shades and shadows techniques. Freehand sketching and model-making techniques. Introduction to computer graphics using simple software tools.

ARE 202 Architectural Design I (0-9-3)
This course introduces the design process in the form of phases, activities, and parties involved. Topics covered include: Description of each phase, activities and objectives; models for problem-solving process in design utilizing graphic thinking. Problem definition, developments of alternatives, evaluation, selection of solution and communication of a design project are introduced, explored and exercised through both abstract sketches and definitive designs to solve simple design problems. Design problems of complete but simple buildings are introduced. Considerations of building function, construction materials and systems, cultural, environmental constraints, and climatic influences are emphasized. Individual design thinking is encouraged throughout the studio work.

Prerequisite: ARE 101

ARE 211 Building Materials (2-3-3)
Properties, behavior, and selection of building materials including wood, laminates, cements, aggregates, concrete, masonry mortar, steel, and finishing materials. Structural and architectural use of traditional and modern building materials. Introduction to basic methods of construction; excavation, foundations, building systems, and construction equipment and general techniques in wood, masonry, and concrete construction. New building materials. Visits to building sites and manufacturers.

ARE 212 Construction Systems (3-0-3)
Construction systems including foundation, superstructure, enclosure (walls and roofs), interior finishes, partitions, and ceilings. Construction and detailing of site-built and prefabricated systems. Selection methods and criteria for appropriate design as a function of climate and energy use, labor and material availability, maintenance and replacement patterns, safety, functionality, and cultural context. Course material comprehension is ensured through submission of sketches, to-scale detail drawings and model-development of the introduced systems.

Prerequisite: ARE 211

ARE 222 Computer Applications in Building Design (1-3-2)
Introduction to Computer-Aided Drafting and Design which includes: 2D drawings, 3D modeling, rendering, and Image processing. Major CAD drafting, and presentation software tools will be used for the production, management, and presentation of project information. Introduction to utilization of modeling and simulation software tools in Architectural Engineering.

Corequisite: ARE 101

ARE 301 Architectural Design II (0-9-3)
This course is a continuation of a two-semester sequence of design studios. Introduction and appreciation of the design process through more complex buildings and larger project sites. The concept of building design as a multi-disciplinary approach is introduced. Integration of structural, mechanical and environmental control systems with the building function, form and spaces organization is emphasized. Basic elements of architectural form and space and how they can be manipulated, organized in the development of a design concept and their visual implications are explored.

Prerequisite: ARE 202

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARE 303</td>
<td>Working Drawings</td>
<td>(0-9-3)</td>
</tr>
<tr>
<td></td>
<td>An introduction to the production of construction documents used in the building industry. A preliminary building design is developed to include detailed materials, and construction information. A set of drawings is completed including floor plans and elevations, site, foundation, framing and roof plans and details, wall and roof sections and details, interior finish elevations and details, and door and window schedules and details. Drawing skills are developed and office management issues are discussed. Prerequisite: ARE 202, ARE 212</td>
<td></td>
</tr>
<tr>
<td>ARE 320</td>
<td>Architectural Acoustics</td>
<td>(1-3-2)</td>
</tr>
<tr>
<td></td>
<td>Introduction to architectural acoustics. Room acoustics and noise sources, measurements, and control. Acoustical properties of materials and room shapes. Sound absorption and transmission. Computer applications in room acoustics simulation. Prerequisite: PHYS 102 or PHYS 133</td>
<td></td>
</tr>
<tr>
<td>ARE 322</td>
<td>Building Mechanical Systems</td>
<td>(2-3-3)</td>
</tr>
<tr>
<td></td>
<td>Introduction to basic concepts, terminology and design methods for building mechanical systems. Thermal comfort, building thermal performance, and heating & cooling load calculation procedures. Fire protection systems and smoke control. Water supply and distribution systems; Waste and drainage systems. Vertical transportation systems. Computer applications. Prerequisite: PHYS 102 or PHYS 133</td>
<td></td>
</tr>
<tr>
<td>ARE 325</td>
<td>Building Illumination</td>
<td>(1-3-2)</td>
</tr>
<tr>
<td></td>
<td>Concept of light, vision, and color. Luminaries and lamps. Lighting system design procedures; calculation and measurement techniques, evaluation of interior lighting quality, and daylighting. Computer applications in artificial and daylighting analysis and design. Prerequisite: PHYS 102 or PHYS 133</td>
<td></td>
</tr>
<tr>
<td>ARE 328</td>
<td>Architectural Acoustics & Illumination</td>
<td>(3-0-3)</td>
</tr>
<tr>
<td></td>
<td>Introduction to basic phenomena, and concepts of architectural lighting and acoustics. Electrical light sources, lighting system, and design methods, quantity and quality of illumination. Daylighting, lighting measurements, instruments and methods. Acoustical properties of materials and constructions. Room acoustics and noise control. Measuring method and equipment. Acoustic design of auditoria. Impact of acoustical and lighting system on Architectural design. Computer applications. Note: For non ARE Students Prerequisite: PHYS 133</td>
<td></td>
</tr>
<tr>
<td>ARE 345</td>
<td>Principles of Heating, Ventilating, and Air-conditioning</td>
<td>(3-0-3)</td>
</tr>
</tbody>
</table>

Note: For non ARE Students

Prerequisite: PHYS 133
Fundamental principles and engineering procedures for the design of heating, ventilating, and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Energy conservation techniques. Computer applications.

Prerequisite: ARE 322, ME 203

ARE 350 Begin Cooperative Work (0-0-0)
See contents in ARE 351.

Prerequisite: Same as in ARE 351

ARE 351 Cooperative Work (0-0-9)
A continuous period of 28 weeks is spent in the building industry to acquire practical experience in the Architectural Engineering under the supervision and guidance of the employer and the academic advisor. During this period the student gains an in-depth exposure and appreciation of the Architectural Engineering profession. The student is required to write a detailed report about his training period under the regulation of the ARE department.

Prerequisite: ENGL 214, Junior Standing

ARE 352 End Cooperative Work (0-0-0)
See contents in ARE 351.

Prerequisite: Same as in ARE 351

ARE 399 Summer Training (0-0-0)
A continuous period of 8 weeks of summer working in the building industry to gain exposure and appreciation of the Architectural Engineering profession. On-the-job training can be acquired in one of the areas related to architectural engineering. The student is required to write a brief report about his work experience. The report should emphasize duties assigned to, and completed by the student.

Prerequisite: ENGL 214, Junior Standing

ARE 400 Senior Design Project (0-9-3)
A comprehensive course that integrates various components of the curriculum in a comprehensive engineering design experience. The project should include development of system design and analysis techniques such as integrated design of structural, mechanical, electrical and environmental systems. The design should take place with consideration to appropriate constraints such as economic, safety, reliability, ethics, environmental, social, and cultural factors. Public oral presentations and written reports of the final design are essential requirements for completion of the course. Computer applications and team work, where appropriate, are greatly encouraged.

Prerequisite: Senior Standing

ARE 413 Construction Management (3-0-3)
A survey of Construction Management: Basic concepts, preparing the bid package, issues during construction phase, construction contracts, legal structure, time planning/control. Project cash flow; project funding, equipment ownership, equipment productivity, construction operations, construction labor, materials management and safety. Types of specifications, technical division, changes, bonds, liens, general conditions, special conditions and contract documents.

Prerequisite: Junior Standing

ARE 431 Building Economy (3-0-3)
Basic concepts of building economics: initial cost, life-cycle cost, cost and benefit ratio analysis, and control of cost and depreciation. Cost estimating, including determination of materials, labor, equipment, overhead, profit, and other construction costs.

Prerequisite: Junior Standing

ARE 440 Solar Energy in Buildings (3-0-3)

Prerequisite: Senior Standing or Consent of Instructor

ARE 442 Building Energy Analysis (3-0-3)
Application of thermal sciences to the evaluation of building energy systems; energy estimating methods; computer models for estimating building energy consumption; applications of various energy analysis computer programs; design methods for reducing energy consumption in buildings.

Prerequisite: ARE 322 or Consent of Instructor

ARE 443 Computer-Aided Building Design (2-3-3)
Introduction to Computer-Aided Building Design (CABD) software tools, their potentials, and limitations. Production of building systems design using computers. Use of computers in space planning, cost analysis, structural design, building services layout, mechanical systems, energy analysis, lighting analysis and design, and room acoustics evaluation. Choice of a software upon given conditions. Use and application of selected package(s) for various building applications.

Prerequisite: ARE 222 or Consent of Instructor

ARE 444 Knowledge-Based Systems in Buildings (2-3-3)

Prerequisite: ICS 102, ARE 222 or Consent of Instructor

ARE 445 Structural Masonry (3-0-3)
Masonry materials and their characteristics, non-load bearing wall construction, load bearing wall design, basics of design for vertical loading and lateral forces, stability and types of load bearing walls, structural elements and forms. Design of single-story structures, reinforced and post tension masonry. Masonry architecture, vault and dome design. Complete design project, site visits and practical applications. Computer applications.

Prerequisite: CE 305 or ARC 222

ARE 446 Planning and Design of Structural Systems (3-0-3)

Prerequisite: CE 305 or ARC 222

ARE 450 Artificial Lighting Systems (3-0-3)
Introduction to different lighting systems. Lighting requirements under different working conditions. Detailed understanding of artificial lighting sources. Quantity and quality of light for various architectural spaces. Polar curves for various artificial lighting sources. Design of artificial lighting systems for avoiding glare. Artificial lighting design of outdoor spaces.

Prerequisite: ARE 325 or Consent of Instructor

ARE 452 **Daylighting Analysis & Design** (3-0-3)

Prerequisite: ARE 325 or Consent of Instructor

ARE 455 **Room Acoustics** (3-0-3)
Acoustical phenomena in enclosed spaces. Sound-absorbing materials and constructions. Acoustical requirements for the design of enclosures for speech and music (e.g. studios, auditoria, and multipurpose halls). Techniques for evaluating room acoustics performance. Sound reinforcement systems; principal uses, basic elements, functional diagrams, and loudspeaker systems. Computer applications in sound behavior modeling and evaluation.

Prerequisite: ARE 320 or Consent of Instructor

ARE 456 **Noise Control in Buildings** (3-0-3)

Prerequisite: ARE 320 or Consent of Instructor

ARE 457 **Introduction to Building Maintenance Management** (3-0-3)
Basic concepts of building maintenance management. Classification of maintenance types, work orders types, planning and scheduling of maintenance works, maintenance contract types. Organizing preventive maintenance activities. Maintenance contract documents.

Prerequisite: Junior Standing

ARE 458 **Quantitative Methods in Construction Management** (3-0-3)
An introduction to the application of modeling techniques to problems in construction management. Topics include the application of linear programming, transportation and assignment techniques, materials management, queuing and simulation.

Prerequisite: Junior Standing

ARE 459 **Contracts and Specifications** (3-0-3)
Contract documents, divisions of specifications, types of specifications, technical divisions options and alternatives, contracts, time and money, changes bonds liens, government contracts, general conditions, special conditions, proposal form, instruction to bidders, invitations to bid, checking, interpretation of specifications, and computerized specifications. Saudi standard public works contract.

Prerequisite: Junior Standing
ARE 490 Special Topics in Architectural Engineering (3-0-3)
Variable contents. State-of-the-art advanced topics in the field of Architectural Engineering.
Prerequisite: Junior Standing

ARE 491 Special Topics in Fire safety Management (3-0-3)
The course introduces students to fire safety design; fire protection objectives; ignition, fire
development and propagation in confined spaces; factors controlling fire severity; chemical
categories of fire fuel; fire detection and notification systems; fire suppression systems; means
of egress and evacuation systems; factors affecting the design of escape routes; smoke
production, movement, management and ventilation techniques in the fire area; hazard and risk
assessment procedures; fire resisting elements separating buildings or compartments within
buildings; protection of openings; fire stopping; fire proofing and fire retardant treatments;
performance-based fire protection design; prescriptive-based fire protection design. The course
will also present a number of case studies on evaluating fire safety in school, medical, office,
library, restaurant and gas station facilities.
Prerequisite: Junior Standing
ACTUARIAL SCIENCES

AS 201 Financial Mathematics (3-0-3)
Theory of compound interest and the mathematics of investment and credit. Measurement of interest, annuities certain (level, non-level, and continuous), amortization schedules, sinking funds, investment yield rates, and valuation of bonds and other securities. Methods of loan measurement and payments (Islamic and Conventional) are illustrated in amortization and sinking fund schedules. Islamic views on interest and investments.
Prerequisite: MATH 102

AS 288 Actuarial Science Problem Lab I (0-1-1)
This problem lab is designed to prepare Actuarial majors for the second Society of Actuaries and Casualty Actuarial Society Examinations, FM (Financial Mathematics).
Prerequisite: AS 201

AS 350 Begin Cooperative Work (0-0-0)
See contents in AS 351.
Prerequisite: Same as in AS 351

AS 351 Cooperative Work (0-0-9)
A continuous period of 28 weeks of industrial employment for Actuarial Science and Applied Financial Mathematics students to work in appropriate industries or firms. Students are evaluated on their performance on the job and are required to submit an extensive formal report on their work experience.
Prerequisite: ENGL 214, AS 201, STAT 301, STAT 310

AS 352 End Cooperative Work (0-0-0)
See contents in AS 351.
Prerequisite: Same as in AS 351

AS 381 Actuarial Contingencies I (3-0-3)
Introduction to life insurance mathematics based on a stochastic approach. Life insurance, annuities, benefit premiums, and net reserves. Parallel treatment of topics based on Takaful system.
Prerequisite: AS 201, STAT 301

AS 388 Actuarial Science Problem Lab II (0-1-1)
This problem lab is designed to prepare Actuarial majors for the first Society of Actuaries (SOA) and Casualty Actuarial Society (CSA) Examinations, Exam P (Probability). Students are assumed to have taken the appropriate prerequisite courses prior to registering for this society exam preparation lab.
Prerequisite: STAT 301

AS 475 Survival Models for Actuaries (3-0-3)
The statistical process of analyzing survival data, particularly for insurance applications. Techniques for estimating mortality rates; construction of mortality tables from the records of insured lives, employee benefit plans, and population statistics. Life tables, graph and related procedures. Graduation. Special attention to censoring and truncation. Single samples: complete or Type II censored data and Type I censored data for Exponential, Weibull, Gamma and other Distributions. Parametric regression for Exponential, Weibull and Gamma
Distributions. Distributions-free methods for proportional hazard and related regression models. This course section is an elective for Actuarial Science & Financial Mathematics major.

Prerequisite: STAT 302, STAT 310

AS 482 Actuarial Contingencies II (3-0-3)
A continuation of Life Contingencies I. Development is based on a stochastic approach to life insurance models. Major topics include benefit premiums and reserves, and multi-life and multiple-decrement models. Parallel treatment of topics based on Takaful system. Application of such area in life insurance and property.

Prerequisite: AS 381

AS 483 Actuarial Risk Theory and Credibility (3-0-3)
Distribution of aggregate claims associated with insurance including analysis of the risk due to variations in expected claim numbers and amounts. Frequency and severity distributions, individual and collective models, ruin theory, continuous-time compound Poisson surplus processes, reinsurance, dividend formulas, credibility models, and simulation. An introduction to empirical Bayes and statistical distributions used to model loss experience. Application of risk theory to the operation of insurance and takaful system and assessment of the credibility of data for ratemaking.

Prerequisite: STAT 416

AS 498 Topics in Actuarial Science and Financial Mathematics (3-0-3)

Prerequisite: Senior Standing, Permission of the Department Chairman upon recommendation of the instructor
BIOLOGY

BIOL 101 Introduction to Biology (3-3-4)
Structural organization of cells and metabolic activities of some of the cellular components, basic principles of genetics, biological diversity and the major kingdoms of life.

BIOL 102 Ecology and Environment (3-0-3)
Population and community ecology, with emphasis on growth and distributions of populations, interaction between species, structure, dynamics, and functions of communities and ecosystems; structure and systems analysis of the earth from a biological perspective, with emphasis on biogeochemical cycles and global change. At least one field trip required.
Prerequisite: BIOL 101 or Consent of the Instructor

BIOL 201 Microbiology (3-3-4)
The course covers structures, functions, and diversity of microbes with respect to basic views related to microorganisms. It highlights different metabolic diversities, advances in molecular phylogeny, diversification and biogeochemical cycling of elements in different environments. It studies interaction among viruses, bacteria and macro organisms with objective views of beneficial vs. harmful effects of microorganisms on environment, human health and society.
Prerequisite: BIOL 102

BIOL 202 Physiology (3-3-4)
An introductory human physiology. The course will concentrate on basic mechanisms underlying human life process including cells and membranes; nervous and muscle function cardiovascular, respiratory, and renal and gastrointestinal physiology; metabolism, endocrinology and reproduction.
Prerequisite: BIOL 101

BIOL 233 Biology for Engineers (2-3-3)
Basic understanding of the fundamental principles of biology. Basic information in chemical context of life, cell structure, cell function, energy production and transfer, cell division (mitosis and meiosis) and DNA Technology and its engineering applications, basic information about microorganisms (microbiology) and viruses. Emphasis on topics of relevance to engineering applications.

BIOL 301 Biochemistry (3-0-3)
Studies of biomolecules such as sugars, polysaccharides, hemoglobin and amino acids and on the structural studies of proteins. Enzymes in biological tissues with emphasis on mechanism and catalytic reactions. Metabolism and transport in biological systems. Study of structure of nucleic acids as well as the DNA molecule.
Prerequisite: CHEM 201, BIOL 101
CIVIL AND ENVIRONMENTAL ENGINEERING

CE 101 Engineering Graphics (1-3-2)
An introductory course on the “language of engineering” and the use of drafting instruments and machines. Topics include freehand sketching, graphic geometry, orthographic projection, sectional and auxiliary views, dimensioning, intersections, developments, and introduction to working drawings and an overview of computer graphics.

CE 201 Statics (3-0-3)
Basic concepts and principles of mechanics; vector algebra; equilibrium of particles in two and three dimensions; definition of moment and couple; reduction of systems forces; equilibrium of rigid bodies; statically determinate structures including beams, trusses, frames, and machines; internal forces; shear force and bending moment diagrams in beams; friction and its applications, centroid and center of gravity of lines, areas, and volumes; moment of inertia and radius of gyration.
Prerequisite: PHYS 101

CE 202 Statics & Strength of Materials (3-0-3)
Basic concepts and principles of mechanics; equilibrium of particles in two dimensions; definition of moment and couple; reduction of systems forces; equilibrium of rigid bodies in two dimensions; internal forces; shear and bending moment diagrams in beams; centroid and moment of inertia; concepts of stress, strain, and constitutive relations; stress and deformation of axially loaded members; thermal stresses; torsional stress and deformation; elastic bending and shear stresses in beams; compound stresses; stress transformation.
Note: Not to be taken for credit with CE 201 or CE 203
Prerequisite: PHYS 101

CE 203 Structural Mechanics I (3-0-3)
Concepts of stress, strain, and constitutive relations; stress and deformation of axially loaded members; thermal stresses; pressure vessels; energy concepts; torsion of circular and thin-walled sections; shear and bending moment diagrams in beams; elastic bending and shear stresses in beams; compound stresses; stress transformation; bending moment-curvature equation; deflection of beams; singularity functions methods, analysis and design applications.
Prerequisite: CE 201

CE 215 Computer Graphics (2-3-3)
The course focus on the following topics: Introduction to Computer Aided Design and Drafting, (CADD), 2D Drawings with AutoCAD includes Multiview Projection, Dimensions, Sections, Auxiliary Views, Free Hand Sketching, Mining and Civil Engineering Problems, Metallic Members and their Connections, Bearing and Slope of Lines and Planes, Contour Map Lines, Cut and Fill, Blue Print Reading, and 3D Drawings.
Prerequisite: ICS 103 or ICS 102 or ICS 101

CE 230 Engineering Fluid Mechanics (3-0-3)
Properties of fluids, hydrostatics with applications to manometers, forces on plane and curved surfaces, buoyancy, equations of continuity, energy and linear momentum with applications, dimensional analysis, dynamic similarity, open channel flow, conduit flow.
Prerequisite: CE 201, MATH 102

CE 261 Surveying I (1-3-2)
Introduction to measuring units; direct distance measurement with tapes; tape corrections; electronic distance measurement; levels and leveling; longitudinal profiles and cross sections; contouring; area and volume computations; the theodolite and angular measurements; optical distance measurements; rectangular coordinates; traverse surveys and computations; mapping; introduction to GPS and GIS.

CE 303 Structural Materials (3-3-4)
Composition and properties of hydraulic cements; characteristics of local aggregates and water; properties of fresh concrete; production, handling and placement of cement and fresh concrete in the local environment; properties of hardened concrete; mix design; special concretes; introduction to pavement types; asphalt cement types, properties and usage; properties of aggregate for asphalt concrete mixes; asphalt concrete mix design concept; types, engineering properties, and usage of structural steel; introduction to aluminum, timber, glass, plastics and other structural materials. Laboratory sessions on tests of concrete constituents, fresh and hardened concrete, aggregate gradation and mix design, flexure behavior of reinforced concrete beams, physical properties and testing of asphalt binders, asphalt concrete mix design; hardness test, tensile and torsion tests on metals, measurement of Poisson’s ratio and stress concentration, and bending tests on steel beams.
Prerequisite: CE 203

CE 305 Structural Analysis I (3-0-3)
Shear force and bending moment diagrams for frames; influence lines for beams and trusses; displacement analysis for beams; Virtual Work Method for beams, frames and trusses; Castigliano’s Theorem; analysis of statically indeterminate structures; the Force Method; the Slope-Deflection Method, the Moment Distribution Method, introduction to the Stiffness Method for beams and frames, the use of structural analysis software.
Prerequisite: CE 203

CE 312 Introduction to CE Design (1-0-1)
A broad introduction to design in all four disciplines; design landscape and requirements related to data, information, specification and codes, methods and tools, design considerations and constraints; issues related to safety, economy and impact; professional ethics and responsibility; design drawings; a small-scale project work to complement student’s understanding.
Prerequisite: Junior Standing

CE 315 Reinforced Concrete I (2-3-3)
Behavior and design of reinforced rectangular and T-sections in flexure; doubly reinforced sections; behavior and design of beams for shear; bond and development length including splices and cut-off points; design of one-way solid and joist floor slabs; design of short columns; design of isolated footings; introduction to prestressing and precast construction; use of STAAD.Pro and other computer softwares in design; completion of a design project; site visits.
Prerequisite: CE 305

CE 318 Numerical & Statistical Methods in Civil Engineering (2-3-3)
Introduction to numerical methods; error analysis; solution of system of linear and nonlinear equations; numerical integration; numerical solutions of ordinary differential equations; curve fitting and interpolation; statistical methods, descriptive statistics, probability distributions, analysis of variance and regression; introduction to linear programming and optimization
problems; development and application of computer programs to case studies derived from civil engineering practices.

Prerequisite: ICS 103 or ICS 102 or ICS 101, MATH 260

CE 330 Environmental Engineering Principles (3-0-3)
Introduction to major environmental pollution issues; Analyses of water quality; Municipal solid waste management and disposal; Hazardous waste testing, management, and treatment; Air pollution characteristics, effects, measurements, control, meteorology, and dispersion; Noise pollution control; Introduction to wastewater testing, treatment and reuse; Environment Impact Assessment.

Prerequisite: CHEM 111 or CHEM 102

CE 332 Engineering Hydrology and Hydraulics (2-3-3)
The hydrologic cycle, precipitation, evapotranspiration, infiltration, hydrograph analysis, fundamentals of groundwater flow, basic concepts of open channel flow and flow in pipes.

Prerequisite: CE 201, MATH 102

CE 341 Transportation Engineering (3-0-3)
Transportation system in Saudi Arabia; transportation planning and evaluation; vehicle characteristics; human factors; geometric design of highways and intersections; basis of pavement design; introduction to capacity analysis of highways and intersections; introduction to airport planning and design; application of transportation related softwares.

Prerequisite: PHYS 101, Junior Standing

CE 343 Transportation Engineering Laboratory (0-3-1)
Field studies of speed; traffic volume, and delay; capacity analysis; geometric design of highways, intersections, and parking facilities; traffic signal design; pavement material testing and design; flexible pavement design; application of transportation related softwares.

Corequisite: CE 341

Prerequisite: CE 303

CE 350 Begin Cooperative Work (0-0-0)
See contents in CE 351.

Prerequisite: Same as in CE 351

CE 351 Cooperative Work (0-0-9)
A continuous period of 28 weeks is spent in the industry to acquire practical experience in Civil Engineering under the supervision and guidance of the employer and the academic advisor. During this period the student gains an in-depth exposure and appreciation of the Civil Engineering profession. The student is required to write a detailed report about his training period under the regulation of the CE department.

Prerequisite: ENGL 214, CE 312, Junior Standing, Approval of the Department

CE 352 End Cooperative Work (0-0-0)
See contents in CE 351.

Prerequisite: Same as in CE 351

CE 353 Geotechnical Engineering I (3-3-4)
Soil formation and identification; index and classification properties of soils; clay minerals; soil compaction; capillarity, swelling, shrinkage and effective stresses; flow of water in soils;
compressibility and consolidation; stress in soils; shear strength of cohesive and cohesionless soils; introduction to lateral earth pressure and shallow foundation.

Corequisite: CE 230
Prerequisite: CE 203

CE 399 Summer Training (0-0-0)
A continuous period of eight weeks of summer working in the industry to gain exposure and appreciation of the civil engineering profession. On-the-job training can be acquired in one of the four specialties of civil engineering. The student is required to write a brief report about his industrial experience. The report should emphasize duties assigned and completed by the student.

Prerequisite: ENGL 214, Junior Standing, Approval of the Department

CE 401 Concrete Technology (2-3-3)
In-depth study of cement composition, hydration of cement; structure and properties of hardened cement paste; volumetric changes in concrete; properties of concrete related to durability such as water absorption, water permeability, chloride permeability, and chloride diffusion; use of mineral admixtures; advanced concretes and reinforcing bars; requirements and specifications for producing durable concretes suitin the local conditions.

Prerequisite: CE 303

CE 402 Durability, Evaluation and Repair of Concrete Structures (3-0-3)
Durability problems of concrete structures such as reinforcement corrosion, sulfate attack, cement-aggregate reactions, salt weathering, efflorescence, acid attack, and environmental cracking; factors causing severe deterioration problems in the Arabian Gulf; condition survey, diagnosis and evaluation of deterioration damage in concrete structures; repair materials and methods; preventive measures such as protective coatings, cathodic protection, de-chlorination, and re-alkalinization.

Prerequisite: CE 303

CE 405 Structural Analysis II (3-0-3)
Review of matrix algebra and solution of simultaneous equations; flexibility (force) method analysis; stiffness (displacement) method of analysis; 2-D trusses, beams and frames; development of computer programs using the stiffness method; use of available computer packages for applications in structural analysis; introduction to the Finite Element Method; introduction to Structural Stability.

Prerequisite: CE 305

CE 406 Structural Mechanics II (3-0-3)
Bending of beams of non-symmetrical sections; shear center; energy concepts including Rayleigh-Ritz method; use of classical and energy methods in the analysis of curved beams; torsion of prismatic members; beams on elastic foundations; use of finite element methods in solid mechanics, including introduction to use of ANSYS software; stability of beam-columns; failure theories and fracture mechanics.

Prerequisite: CE 203

CE 408 Steel Design I (2-3-3)
Properties of structural steel; steel sections, introduction to load resistance factor design (LFRD), design of tension members, compression members and capacity calculations; width-thickness ratios; design of beams with and without lateral supports; design of members under
combined axial and bending loads; design and details of simple bolted and welded connections, and an introduction to common building connections; use of STAAD.Pro software for design of elements and overall design of frames; completion of a design project; site visit.

Prerequisite: CE 305

CE 410 Senior Design Project Preparation
(0-3-1)
Each student starts the planning and undertaking of a suitable senior design project in consultation with the course coordinator. The student makes a presentation of his proposal for senior project work before a committee. The proposal outlines the objectives, scope and details of the work.
Prerequisite: ENGL 214, CE 312

CE 412 Senior Design Project
(0-6-2)
Students undertake a civil engineering design project under the supervision of a faculty member with the aim of achieving a comprehensive design experience through a coherent study of all applicable principles, strategies and methodologies of design, including construction operation, and maintenance as and when applicable. The project should also take into consideration other appropriate factors such as alternative designs, economic feasibility and social and environmental impacts. The student is required to make an oral and written presentation of the design project to an examining committee.
Prerequisite: CE 318, CE 410

CE 413 Applied Design Project
(0-9-3)
ACE students undertake a civil engineering design project under the supervision of a faculty member with the aim of achieving a comprehensive design experience through a coherent study of engineering and design principles. The student chooses the project in the field in which he is most familiar through his co-op work experience. The student is required to make an oral and written presentation of the design project to an examining committee.
Corequisite: CE 351

CE 415 Reinforced Concrete II
(2-3-3)
Design of two-way slabs using ACI ‘direct design method’; design of continuous beams; behavior and design of columns under axial load and bending moment including slenderness effect; introduction to various types of foundations; lateral resistivity, design of wall footings and combined footings; design of retaining walls; simple design of prestressed, precast elements; STAAD.Pro software application in design; completion of a multistory design project.
Prerequisite: CE 315

CE 418 Steel Design II
(3-0-3)
Introduction to elasto-plastic material behavior, plastic analysis and design of continuous beams and simple frames using load resistance factor design (LRFD); design of built-up beams and plate girders, optimum proportioning of I-beam, design of composite section analysis and design for torsion, design of semi-rigid and rigid connections, use of STAAD.Pro software in design of rigid frames and steel buildings.
Prerequisite: CE 408

CE 421 Construction Methods and Management
(3-0-3)
An overview of construction industry, contracts, contract documents and professional liabilities, issues during construction phase, business ownership, cost estimation, equipment productivity; concrete form design; planning and scheduling, resource leveling, cost control; introduction to pert, construction management aspects; materials management, construction productivity and safety.

Prerequisite: Junior Standing

CE 431 Hydrologic Engineering (3-0-3)
Review of fundamentals of hydrology and advanced treatment for estimation of elements of the hydrologic cycle; hydrologic flood routing; probability concepts in hydrology, flood frequency analysis; hydrologic principles in engineering design; computer applications in hydrology and introduction to minor structure design.

Prerequisite: CE 332

CE 433 Groundwater Engineering (3-0-3)
Introduction and definitions, groundwater storage and supply, Darcy’s Law and its limitation, Dupuit approximation, steady and unsteady flows in confined and unconfined aquifers, radial flow towards wells, storage coefficient and safe yield in a water-table aquifer, design of wells, flow nets, introduction to sources of groundwater contamination.

Prerequisite: CE 230

CE 436 Open Channel Hydraulics (3-0-3)
Analysis and characteristics of flow in open channels; channel design considerations including uniform flow, flow measuring devices, gradually varied flow, flood routing, rapidly varied flow; hydraulic factors for the design of reservoirs, dams, spillways and stilling basins.

Prerequisite: CE 230

CE 438 Hydraulic Systems Design (2-3-3)
Fundamental principles and design of water supply, sanitary and storm sewer systems and their components, including pipes, pumps, storage facilities, open-channels, culverts; computer applications in the design and analysis of hydraulic systems.

Prerequisite: CE 230

CE 439 Civil Engineering Systems Analysis (3-0-3)
Techniques commonly associated with systems engineering; new techniques applicable to design and operations of civil engineering systems; linear optimization, linear programming, transportation and assignment problems, network analysis; simulation techniques; decision analysis; nonlinear optimization; critical path method.

Prerequisite: CE 318

CE 440 Highway and Airport Materials (3-0-3)
Construction materials; asphalt cement; emulsified asphalt; foamed asphalt; Portland cement asphalts; cement; aggregates and asphalt additives; specifications; material selection and evaluation; tests of asphalts and aggregates, mix design procedures for hot and cold asphalt mixes, including Marshall and SuperPave; mix design for Portland cement concrete mixes for rigid pavements; characterization techniques; modulus of resilience; fatigue and rutting performance prediction; field quality control procedures; Computer applications in materials evaluation and design.

Prerequisite: CE 303
CE 441 Design of Pavement (3-0-3)
Pavement types and design factors; stresses and strains in flexible and rigid pavements; traffic analysis and design considerations; material characterization; performance evaluation; reliability aspects in design and construction; structural thickness design of highway and airport pavements using different methodologies; pavement evaluation; Computer application in pavement design.
Corequisite: CE 341

CE 442 Construction and Maintenance of Highways and Airports (3-0-3)
Selection and processing of construction materials; asphalt concrete mix design; asphalt plants operation; material placement and compaction methods; quality control; earthwork, highway drainage and roadside requirements; construction standards; pavement performance and evaluation; pavement distress identification; surface treatments; techniques; application and design; overlay design; pavement recycling techniques; computer applications.
Prerequisite: Junior Standing

CE 444 Traffic Engineering and Roadway Safety (3-0-3)
Vehicle, roadway and driver characteristics; traffic engineering and safety studies; highway capacity analysis; traffic control methods and devices; intersection signalization and signal timing; fundamentals of intersection design; parking facilities; introduction to attenuation devices; Intelligent transportation system; computer applications.
Prerequisite: CE 341

CE 453 Geotechnical Engineering II (3-0-3)
Fundamental relations of elasticity and plasticity in soil masses; unsaturated soils behavior; deformation properties of cohesionless and cohesive soils; advanced strength concepts in soils and stress path; slope stability analysis; introduction to soil dynamics.
Prerequisite: CE 353

CE 454 Soil Stabilization and Site Improvement (3-0-3)
General survey of soil types and their behavior and the available techniques for improvement; shallow and deep mechanical modifications; modifications by admixtures and grouting; modifications by inclusions; the use of geosynthetic material in filtration, seepage control, separation, reinforcement and water retention; hydraulic modifications; and treatment of marginal soils.
Prerequisite: CE 353

CE 455 Foundation and Earth Structure Design (3-0-3)
Site investigation, including determination of soil properties for design; bearing capacity theory of shallow foundation; settlement of building foundations; design and analysis of retaining walls, sheet piles and braced excavations; design of pile and pier foundations.
Prerequisite: CE 353

CE 464 Project Surveying (3-0-3)
Route survey; horizontal curves; vertical curves; spirals; construction surveys; applications of Total Stations; topographic surveying and mapping; introduction to Global Positioning System.
Prerequisite: CE 261

CE 471 Water and Wastewater: Treatment and Reuse (2-3-3)
Water treatment including pre-design issues, desalination, lime softening, sedimentation, filtration, membrane systems, ion exchange, adsorption, and disinfection technologies; Wastewater treatment including fundamentals of reactor design, activated sludge system, membrane bioreactor, trickling filter, and secondary clarifier; Natural wastewater treatment technologies for smaller and remote communities; Wastewater reuse including water scarcity issues, legal issues, health issues, technical issues & methodologies, areas of application, and case studies.

Prerequisite: CE 330

CE 473 Design and Operation of Water and Wastewater Treatment Plants (3-0-3)
Theory and practice in sanitary engineering including the concepts of processing, design, economic evaluation and computer analysis; class projects incorporating practical considerations in the design and operation of treatment units and the combining of unit processing in water and wastewater treatment plants; field trips will be organized to visit various types of treatment plants in operation.

Prerequisite: CE 330

CE 474 Municipal Solid Waste Management (3-0-3)
Problems, regulations, collection, handling, recycling and disposal issues related to municipal solid wastes; Characterization of municipal solid wastes including physical, chemical, and biological characteristics; Integrated municipal solid waste management practices including resource recovery, composting, incineration, and landfill design.

Prerequisite: CE 330

CE 476 Industrial Hazardous Waste Management & Treatment (3-0-3)
Theory and design of several industrial hazardous waste management and treatment aspects including regulations, environmental audits, pollution prevention, risk assessment, chemical & biological process fundamentals, and industrial hazardous waste separation, handling, treatment, & disposal techniques.

Prerequisite: CE 330

CE 490 Civil Engineering Seminar (1-0-1)
Weekly presentation of lectures by the instructor and the invited speakers on topical issues in civil engineering, including contemporary issues, professional responsibilities, ethical issues and advances and challenges in civil engineering profession; each student will be required to make a presentation on a selected topic and participate in classroom discussion.

Prerequisite: CE 312, Senior Standing
CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 201</td>
<td>Principles of Chem. Engg. I</td>
<td>(3-2-3)</td>
</tr>
<tr>
<td></td>
<td>The basic principles and techniques used for calculations of material balances in chemical engineering processes are introduced. Material balance for reactive and nonreactive processes is discussed. Simple chemical engineering processes and complex systems including recycle are covered. Study of behavior of ideal and real gases. Computer simulation will be used for material balance problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CHEM 102, PHYS 102</td>
<td></td>
</tr>
<tr>
<td>CHE 202</td>
<td>Principles of Chem. Engg. II</td>
<td>(2-2-2)</td>
</tr>
<tr>
<td></td>
<td>The first law of thermodynamics is studied in detail. Material covered includes concepts of energy, enthalpy, heat effects, conservation of energy, mechanical work, chemical energy liberation and equations of state, behavior of gases and liquids and standard heats of reaction, formation and combustion and heat effects of industrial reactions. Thermodynamics properties of materials and methods of their estimation are presented. Study of combined mass and energy balances and applications to problems through use of enthalpy concentration charts and humidity charts. Computer simulation will be used for combined material and energy balance problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CHE 201, MATH 201, ICS 103 or ICS 102 or ICS 101</td>
<td></td>
</tr>
<tr>
<td>CHE 204</td>
<td>Transport Phenomena I</td>
<td>(3-0-3)</td>
</tr>
<tr>
<td></td>
<td>The course introduces principles governing fluid flow for Newtonian and non-Newtonian fluids in laminar and turbulent flows. Mass, energy, momentum balances, dimensional analysis and simulation are used as tools to analyze flows: in pipes, in packed beds, around particles and surfaces, fluidized beds and flow meters. The course also covers: hydrostatics, exact solution of Navier-Stokes equations, constitutive equations for stresses, viscous effects and boundary layer flows. Computer simulation will be used for piping and pumping problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corequisite: MATH 202</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CHE 201 or PETE 201, ICS 103 or ICS 102 or ICS 101</td>
<td></td>
</tr>
<tr>
<td>CHE 300</td>
<td>Transport Phenomena II</td>
<td>(3-0-3)</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CHE 202, CHE 204</td>
<td></td>
</tr>
<tr>
<td>CHE 303</td>
<td>Chemical Engineering Thermodynamics</td>
<td>(3-0-3)</td>
</tr>
<tr>
<td></td>
<td>This course presents the theory and applications of chemical engineering thermodynamics. Topics covered include: review 1st and 2nd laws of thermodynamics, equations of state, thermodynamics of flow processes, steam power plants, thermodynamic relations, thermodynamics properties of pure fluids, vapor-liquid equilibria, phase diagrams, solution thermodynamics, thermodynamics properties of fluid mixtures, and chemical-reaction equilibria. Computer simulation to thermodynamic systems is applied in this course.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CHE 202</td>
<td></td>
</tr>
<tr>
<td>CHE 304</td>
<td>Transport Phenomena III</td>
<td>(3-0-3)</td>
</tr>
</tbody>
</table>
This course covers fundamentals of mass transfer, differential equations of mass transfer, steady-state and unsteady-state molecular diffusion, convective mass transfer, interface mass transfer, mass transfer theories, mass transfer equipment, absorption and humidification operations.

Corequisite: CHE 300
Prerequisite: CHE 204

CHE 306 Stagewise Operations (3-0-3)

Prerequisite: CHE 303, CHE 304

CHE 309 Chemical Engineering Laboratory I (0-6-2)
This laboratory emphasizes concepts presented in the transport phenomena courses. A safety session is given at the commencement of the course. Safe practices are strictly adhered to throughout the course. Students carry out selected experiments in fluid mechanics, heat transfer, thermodynamics and diffusional mass transfer. Data collected are analyzed and compared to applicable theories.

Corequisite: CHE 304
Prerequisite: CHE 300, ENGL 214

CHE 350 Begin Cooperative Work (0-0-0)
See contents in CHE 351.

Prerequisite: Same as in CHE 351

CHE 351 Cooperative Work (0-0-9)
In this course the student will spend a period of 28 weeks of industrial employment in industry. Students are required to write a detailed formal report on their experience. Evaluation by the employer will be counted towards the grade given for this course.

Prerequisite: ENGL 214, CHE 309

CHE 352 End Cooperative Work (0-0-0)
See contents in CHE 351.

Prerequisite: Same as in CHE 351

CHE 399 Summer Training (0-0-0)
A period of 12 weeks of industrial employment in appropriate industries or firms. Students are evaluated on their performance, and are required to submit a report and offer a seminar about their experience before receiving a grade of Pass or Fail for the course.

Prerequisite: ENGL 214, CHE 304

CHE 401 Process Dynamics and Control (3-0-3)
The intent of this course is to present the fundamental principles in modeling and control of chemical processes. The topics covered in this course include: modeling of chemical processes, Laplace transfer and state-space models, approximation of complicated models, dynamics and simulation of different systems, feedback controllers, PID tuning, design and
instrumentation of closed-loop control systems, control block diagrams, frequency response analysis, Bode and Nyquist stability criteria.

Prerequisite: CHE 304, CISE 301

CHE 402 Kinetics and Reactor Design (3-0-3)
Introduction to kinetics of reactions. Techniques for experimentally determining rate laws for simple and complex chemical reactions. Design and operation of isothermal batch and flow reactors. Nonisothermal reactor design and operation. Introduction to catalysis and catalytic reactors. Computer simulation of reaction systems will be implemented.

Prerequisite: CHE 303, CHE 304, CHEM 311, CISE 301

CHE 409 Chemical Engineering Laboratory II (0-6-2)
A laboratory to complement the theoretical derivations in stagewise operations, process dynamics and control, and kinetics and reactor design. A safety session is given at the commencement of the course. Safe practices are strictly adhered to throughout the course. Two environmental engineering reaction experiments are included. Students carry out selected experiments, analyze data collected referring to applicable theories and present their findings in formal reports.

Corequisites: CHE 401, CHE 402

Prerequisite: CHE 306, CHE 309

CHE 422 Properties of Fluids (3-0-3)
Study on several methods for the estimation of physical, thermodynamic and transport properties of fluids commonly used in industry. Study of literature sources where property information is available. Application of these properties to process design is emphasized to give the students a complete picture of the use and importance of good property estimation.

Prerequisite: CHE 303

CHE 425 Process Design and Economics (3-0-3)
Introducing the Process flow diagrams and plant layout, conceptual design and synthesis of process flow diagrams, understanding the process conditions, technical analysis of chemical processes and use of heuristics in design and analysis, and use of simulation in equipment design and process synthesis. Engineering economic analysis of chemical processes with particular emphasis on estimation of capital cost, estimation of cost of manufacturing, time value of money, depreciation, cash flow, profitability and financial analysis, methods for decision making among alternatives.

Corequisite: CHE 402

Prerequisite: CHE 306

CHE 430 Separation Processes (3-0-3)
The intent of this course is to present advances separation techniques practiced in chemical and petrochemical industry. Dynamics of the distillation column involving the column internals and column diameter calculations will be covered. Emphasis will be on the unit operations of multi-component gas absorption, humidification, evaporation, adsorption and ion exchange, reverse osmosis, permeation, dialysis, electrodialysis, and pervaporation.

Prerequisite: CHE 306

CHE 431 Membrane Processes Technology (3-0-3)
Membrane fundamentals and practical applications of membrane processes; membrane classifications, materials, properties and characterization, and preparation; transport through
membranes, concentration polarization and membrane fouling, membrane permeability with special emphasis on membrane modules and process design; gas separation, pervaporation, ultrafiltration, reverse osmosis, and membrane reactors.

Prerequisite: CHE 306

CHE 432 Principles of Heat Exchanger Design (3-0-3)

Prerequisite: CHE 300

CHE 440 Catalysis & Catalytic Processes (3-0-3)
Basic definitions and classification of catalysts, nature and mechanism of catalytic reactions, adsorption processes, catalyst preparation and catalyst characterization. Mass and heat transport effects in catalysis. Catalyst deactivation. Design principles of heterogeneous catalytic reactors such as fixed- and fluidized-bed reactors. Industrial catalytic processes with emphasis on existing processes in Saudi Arabia.

Corequisite: CHE 402

CHE 449 Biochemical Engineering (3-0-3)

Corequisite: CHE 402

Prerequisite: CHE 304

CHE 453 Mathematical Methods in Chemical Engineering (3-0-3)
This course introduces the selection, construction, solution, and interpretation of mathematical models applicable to the study of chemical engineering problems. Topics covered include: introduction to mathematical modeling, analytical solution of ordinary differential equations, special functions, analytical solution of partial differential equations, numerical solution of nonlinear algebraic systems, and numerical solution of systems of first order ODE’s.

Prerequisite: MATH 202, CHE 304

CHE 455 Chemical Process Simulation (3-0-3)
The intent of this course is to emphasize the application of computer simulation and flowsheeting, optimization, and process synthesis techniques to the design and operation of chemical processes and equipment. Students will learn how to simulate various process units and processes, and what is in the black box of a simulator program. The topics covered in this course include: concepts of structure and information flow and tasks in the design and analysis of chemical processes, basic solution strategies in flowsheeting computations, computation sequence in solving set of equations, concept of flowsheet partitioning and tearing, steady-state unit operation models in simulator packages such as Aspen Plus, HYSYS and UniSim Design, selection of thermodynamics and physical property models, and heuristics for process synthesis. Each student will be assigned an individual process to simulate under steady-state conditions using available process simulators.

Prerequisite: CHE 306
CHE 456 Industrial Process Control (3-0-3)
Review of feedback control, cascade control, Ratio, override, selective, feed-forward, and multivariable process control. Dynamic simulation of control systems using SIMULINK and other commercial software packages. Instrumentation, design case studies and tuning case studies.
Prerequisite: CHE 401

CHE 461 Petroleum Refining (3-0-3)
General review of refining processes of crude oil. Shortcut methods for practical design calculations. Design of atmospheric, vacuum, and pressure columns for petroleum fractionation, including auxiliary furnaces and condensers. Recent developments in heavy oil processing.
Prerequisite: CHE 401

CHE 462 Petrochemical Industries (3-0-3)
Process technologies used in petrochemical industries, such as thermal and catalytic cracking will be introduced. Basic, intermediate and final petrochemicals are studied. These include synthesis gas and derivatives, ethylene, propylene, butene, BTX, and their derivatives. Competing technologies will be assessed from the chemical engineering point of view.
Prerequisite: CHE 306

CHE 463 Polymer Technology (3-0-3)
Structure and physical properties of polymers. Homogeneous and heterogeneous polymerization processes. The chemical, mechanical, and engineering properties of polymers as well as polymer processing and rheology are emphasized in this course.
Prerequisite: CHEM 311

CHE 464 Refining and Petrochemicals Technology and Economics (3-0-3)
The characteristics of the industry in terms of feed stocks and products interaction, processes and technologies, and Economics are introduced. Petroleum fractionation and general review of refining processes of crude oil are introduced. Important petrochemical products are introduced with emphasis on those produced in Saudi Arabia. The basic unit processes such as hydrotreating, cracking, reforming, dehydrogenation, oxidation etc., are introduced along with their applications in the industry. The economics and cost of production is discussed whenever relevant. The course will emphasize the basic concepts and principles of the industry and will avoid unnecessary and descriptive process details. Integration of the Petrochemical and Petroleum Refining industries will be highlighted whenever applicable.
Prerequisite: CHE 306

CHE 465 Process Integration and Optimization (3-0-3)
This course presents recent advances in chemical process integration and synthesis. The course presents systematic and state-of-the-art techniques for understanding the global insights of mass and energy flows within a process and how these integrated insights can be used to optimize process performance. A variety of mathematical and visualization tools are presented. In particular, emphasis is given to fundamental integration and synthesis methodologies along with their applications to the process industries.
Prerequisite: CHE 306

CHE 470 Process Air Pollution Control (3-0-3)
Sources and effects of air pollution; air quality, atmospheric reactions and scavenging processes. Meteorological setting for dispersion of air pollutants. Theory of atmospheric dispersion modeling. Air pollution control concepts, selection, evaluation and application of control devices for emission and control from chemical and petrochemical industries.

Prerequisite: CHE 304

CHE 471 Process Water Pollution Control (3-0-3)

Prerequisite: CHE 304

CHE 472 Corrosion (3-0-3)
Study of corrosion mechanisms and techniques used in prevention and control. Electrochemistry and its application to corrosion. Material selection for different environments.

Prerequisite: CHEM 311

CHE 473 Desalination (3-0-3)
Description of methods of water analysis and treatment. Study of properties of water and aqueous solutions. Detailed discussion and analysis of design, maintenance, energy requirements and economics of the major processes of desalination such as distillation, reverse osmosis, and electrodialysis.

Prerequisite: CHE 304, CHE 303

CHE 480 Energy Technology (3-0-3)
Statistics on global energy use, supply and demand of energy, energy generation from fossil and non-fossil fuels. Energy transportation and storage, energy from low-calorific value fuels, energy conservation and economics, and energy management.

Prerequisite: CHE 304, CHE 303

CHE 491 Materials Evaluation and Selection (3-0-3)
This course is designed to acquaint students with the theoretical reasoning and experimental methods used in evaluating both crystalline and non-crystalline materials covering metallic, polymeric and ceramic materials. The principles involved in their selection based on mechanical properties, resistance to degradation, and wear, and special properties are illustrated in the practical examples from process industries.

Prerequisite: ME 205

CHE 495 Integrated Design Course (1-6-3)
Development of general engineering skills and judgment needed in the solution of open-ended problems from a technical-economic viewpoint are the major goals of this course. The design of a project from conception to implementation including preliminary feasibility study, preparation of process, flow diagram, process design, pre-construction cost estimate, equipment sizing (design), selection of materials of construction, and analysis of project. Applications will be in areas such as petroleum, petrochemicals, emerging chemical industries and water desalination. Design topics will be assigned to teams of students.

Corequisite: CHE 402, CHE 425

CHE 498 Special Topics in Chemical Engineering I (3-0-3)
Selected topics from the broad area of chemical engineering. The specific contents of the course is published one semester in advance.

Prerequisite: Departmental Approval

CHE 499 Special Topics in Chemical Engineering II
(3-0-3)
Selected topics from the broad area of chemical engineering. The specific contents of the course is published one semester in advance.
Prerequisite: Departmental Approval
CHEMISTRY

CHEM 101
General Chemistry I
(3-4-4)
Matter, atomic structure and the periodic table, chemical bonding, stoichiometry of pure substances, reaction in aqueous solutions, states of matter (gases, liquids, and solids), mixtures (with emphasis on some physical aspects of solutions), thermochemistry.
Laboratory: Qualitative and quantitative aspects of general chemistry.

CHEM 102
General Chemistry II
(3-4-4)
Chemical equilibria (gases, acids and bases, and solubility equilibria), chemical kinetics, spontaneity of reactions, coordination chemistry, nuclear chemistry, electrochemistry, chemistry of selected representative elements, organic structure and reactions, chemistry of materials.
Laboratory: Qualitative and quantitative aspects of general chemistry
Prerequisite: CHEM 101

CHEM 111
Basics of Environmental Chemistry
(2-0-2)
Elements, compounds, chemical equations, and gas laws, spontaneity of reactions, chemical kinetics, chemical equilibria (gases, acids and bases, redox and complexation reactions), organic structures and reactions, carbohydrates, proteins and fats, pesticides and organic pollutants, colloids.
Prerequisite: CHEM 101 (Not open for Chemistry and Industrial Chemistry Majors)

CHEM 201
Organic Chemistry I
(3-4-4)
Structure, stereochemistry and the properties of organic compounds, synthesis and reactions of alkanes, alkenes, alkynes, dienes, alicyclic, alcohols, ethers, mechanism of radical substitution, radical, electrophilic addition and electrophilic aromatic substitution.
Laboratory: Laboratory techniques of organic chemicals and laboratory synthesis of organic chemicals.
Prerequisite: CHEM 102

CHEM 202
Organic Chemistry II
(3-4-4)
Laboratory: Basic spectroscopic techniques, laboratory synthesis of organic chemicals and multistep synthesis.
Prerequisite: CHEM 201

CHEM 212
Physical Chemistry I
(3-4-4)
Basic gas laws, laws of thermodynamics, chemical equilibria, phases, solutions, and phase equilibria.
Laboratory: Techniques of physical measurements, error analysis and statistics with experiments on gas laws, calorimetry, equilibria and phase diagrams.
Prerequisite: CHEM 102, MATH 102, PHYS 102

CHEM 223
Quantitative Methods of Chemical Analysis
(1-4-2)
Laboratory: Experiments on basic analytical methods, including gravimetric, and titrimetric techniques.

Prerequisite: CHEM 102

CHEM 303 Spectroscopic and Qualitative Organic Chemistry (2-4-3)
A course in which spectroscopy and classical methods are combined to identify unknown organic compounds. Separation of mixtures of unknowns is carried out using chromatographic methods and other classical chemical methods. Spectroscopic and NMR methods for the identification of compounds are emphasized.

Laboratory: Spectroscopic and wet chemical techniques are used to determine structures of unknown organic compounds.

Prerequisite: CHEM 202

CHEM 311 Physical Chemistry II (3-4-4)
The application of thermodynamics to electrochemical cells, chemical kinetics; the kinetics of reactions in the gaseous and liquid states, transport properties, surface chemistry and colloids and surface dynamics.

Laboratory: Experiments involving conductivity, electrochemistry, chemical kinetics, and transport properties of gases and liquids.

(Prerequisite: CHEM 212 or ME 203) or (Corequisite: CHE 303)

CHEM 312 Physical Chemistry III (3-0-3)

Prerequisite: CHEM 311

CHEM 314 Computer Applications in Chemistry (3-0-3)
Application of available PC-software to solve chemical and numerical problems in the various areas of chemistry and to treat laboratory data. Molecular modeling and its application to interpret spectroscopic results. Emphasis will be placed on literature review and implementation of ready-to-use PC-programs in chemistry.

Prerequisite: ICS 101 or ICS 102 or ICS 103, CHEM 212

CHEM 323 Instrumental Chemical Analysis (2-4-3)
Instrumental analysis techniques such as molecular and atomic spectrophotometry: absorption and emission spectroscopy, electroanalytical techniques of analysis with emphasis on potentiometry and voltammetry, chromatography, and thermal analysis.

Laboratory: Experiments related to qualitative and quantitative analysis using various instrumental techniques.

Prerequisite: CHEM 102

CHEM 324 Advanced Instrumental Chemical Analysis (2-4-3)
Advanced instrumentation and application of modern instrumental techniques to include: spectroscopy, mass spectrometry, electrochemical methods, chromatography and flow injection analysis.

Laboratory: Experiments related to qualitative and quantitative analysis using advanced instrumental techniques.

Prerequisite: CHEM 323

CHEM 331 Inorganic Chemistry (3-4-4)
Introduction to modern inorganic chemistry, facets of atomic structure and properties of elements, periodic table and periodic properties, molecular bonding, solid state chemistry, acids and bases, oxidation and reduction, molecular shape and symmetry, coordination chemistry.

Laboratory: Experiments in inorganic chemistry

Prerequisite: CHEM 102

CHEM 332 Advanced Inorganic Chemistry (3-0-3)
Transition metal chemistry, structural and bonding interpretation of magnetic and spectral properties of transition metal compounds (ligand field theory), stabilities of transition metal complexes, reaction mechanisms of complexes, polynuclear complexes, coordination compounds as industrial homogeneous catalysts, naturally occurring transition metal complexes, importance of complexes in environment, importance of complexes in biological systems, chemistry of organometallic compounds.

Prerequisite: CHEM 331

CHEM 355 Industrial Catalysis (3-0-3)
A study of transition metal chemistry and organometallic reaction mechanism. A study of important catalytic processes including alkylation, carbonylation, Oxidation-Oxygenation, Hydrogenation, Methatasis and others. Study of the mechanisms, the catalytic cycles and the active intermediates involved in these processes. Discussion of the most important industrial catalytic processes now operating in Saudi Arabia and worldwide.

Prerequisite: CHEM 202

CHEM 399 Summer Training (0-0-2)
A period of two months of industrial employment in appropriate industries or firms. Students are evaluated on their performance, and are required to submit a report and present a seminar about their experience before receiving a grade for this course.

Prerequisite: ENGL 214, Junior Standing, Approval of the Department.

CHEM 401 Special Topics (3-0-3)
A discussion of the recent advances in selected fields of chemistry

Prerequisite: Permission of the Instructor

CHEM 402 Structure and Mechanisms in Organic Chemistry (3-0-3)
Chemical bonding and structure, stereochemical principles, conformational and steric effects, methods of mechanistic study, nucleophilic substitution, polar addition and elimination, carbanions, carbonyl compounds, aromatic substitution, concerted reactions, other interesting reaction types.

Prerequisite: CHEM 202

CHEM 403 Synthetic Organic Chemistry (3-0-3)
Organic reaction types, less common functional groups, reaction mechanisms, basic synthetic methods, retrosynthesis and selected total synthesis of natural products.

Prerequisite: CHEM 202

CHEM 406 Spectroscopic Identification of Organic Compounds (3-0-3)
Identification and structural analysis of organic compounds by nuclear magnetic resonance, infrared and ultraviolet spectroscopy, and mass spectrometry. Introduction to instrumentation, sample handling and basic theory of each technique with emphasis on their practical applications for structure determination.
Prerequisite: CHEM 202

CHEM 415 Molecular Spectroscopy (3-0-3)
General review of wave mechanics in relation to molecular systems, vibrational and rotational energies of molecules, absorption and emission of radiation, molecular symmetry and group theory, electronic spectra of diatomic and polyatomic molecules.
Prerequisite: CHEM 312

CHEM 416 Photochemistry (3-0-3)
A study of the fundamental photochemical and photophysical processes which follow absorption of radiation by molecules and the techniques used to study these processes.
Prerequisite: CHEM 312

CHEM 417 Introduction to Statistical Thermodynamics (3-0-3)
Prerequisite: CHEM 312

CHEM 418 Quantum Chemistry (3-0-3)
Classical mechanics versus quantum mechanics, postulates of quantum mechanics, Schrodinger equation, particle in a box, atomic wave functions, Russell-Saunders coupling and perturbation theory, molecular wave functions.
Prerequisite: CHEM 312

CHEM 424 Environmental Analysis (3-0-3)
Prerequisite: CHEM 324

CHEM 425 Trace Analysis (3-0-3)
Sampling, the working environment, laboratory materials, storage, reagents, ordinary techniques e.g. spectrophotometry, electroanalytical, methods and separation techniques, atomic absorption and atomic emission, fluorecence and phosphorescence, inductively coupled plasma, coupled techniques such as ICP-MS, HPLC-MS and HPLC-ICP-MS.
Prerequisite: CHEM 324

CHEM 431 Chemistry of the Environment (3-0-3)
Chemical processes important in the environment from naturally occurring to man-induced systems, thermodynamics and chemical consideration of fuels, the thermodynamics of the atmosphere, atmospheric photochemistry, chemistry of natural water systems, chemistry of pesticides, fertilizers and other important environmental contaminants, aspects of the carbon, nitrogen and sulfur cycles.
Prerequisite: CHEM 331 or Permission of Instructor

CHEM 436 Chemical Applications of Group Theory (3-0-3)
Introduction, symmetry elements and symmetry operations, introduction to groups, symmetry point groups, class structure, representations and character tables, chemical applications of symmetry, bonding and spectral interpretation from group theory.
Prerequisite: CHEM 331 or Permission of Instructor

CHEM 450 Polymer Chemistry

Basic concepts of polymer chemistry, condensation, polymerization, addition polymerization, copolymerization, polymer structure and properties, molecular weight measurements of polymers, analysis and testing of polymers, industrially important polymers and copolymers and plastic technology.

Laboratory: The laboratory classes are organized to provide practical experience in the field of polymer chemistry, polymer synthesis, mechanism and kinetics of polymerization, properties and characterization of polymers.

Prerequisite: CHEM 202

CHEM 453 Chemistry of Petroleum Processing

A study of the science of petroleum beginning with its formation in the ground, the physical and chemical properties of petroleum and petroleum products, the chemistry of major refining processes, and eventually leading to analysis of the production of a wide variety of petrochemical intermediates as well as the more conventional fuel products.

Laboratory: The laboratory experiments provide practical experience in the field of petroleum chemistry, catalyst preparation, catalytic reaction, and hydrocarbon analysis.

Prerequisite: CHEM 202

CHEM 455 Industrial Inorganic Chemistry

A study of inorganic chemicals and products with emphasis on industrial processes. The focus is on sulfur and sulfuric acid, ammonia and its derivatives, cement, glasses, ceramics, electrolytic processes, chlor-alkali industries, phosphorous industries, fertilizer chemicals and metallurgical processes.

Prerequisite: CHEM 331

CHEM 456 Industrial Organic Chemistry

A study of the organic chemicals and products derived mainly from sources other than petroleum. Special emphasis is on oils and fats, pharmaceuticals, agrochemical, fermentation products, surface coatings, explosives, detergents, and pollution and waste management.

Prerequisite: CHEM 202

CHEM 457 Homogeneous Catalysis in Industrial Processes

Introduction to homogeneous catalysis in chemical industries using inorganic compounds, comparison of homogeneous and heterogeneous catalysis, basic concepts of organometallic chemistry, metal chelates as catalysts, metallocenes as polymerization catalysts, synthesis of specialty compounds using coordination compounds as catalysts.

Prerequisite: Permission of Instructor

CHEM 471 Chemistry Senior Project I

Students are introduced to research under the direction of a member of faculty. Reasonably simple but challenging projects are chosen which give students the opportunity to use different techniques and principles of chemistry. After their research, students will submit a final project report.

Prerequisite: Senior Standing

CHEM 472 Chemistry Senior Project II

The requirements for this course are the same as CHEM 471.

Prerequisite: CHEM 471
CHEM 479 Chemistry Seminar (1-0-1)
Students will participate with faculty members in giving and attending seminars of general chemical interest. Topics cover both reviews of current literature and discussion of research in progress. The course includes also a guide to the use of traditional and automated methods for storage and retrieval of chemical information.

Prerequisite: Permission of the Instructor
CONTROL AND INSTRUMENTATION SYSTEMS
ENGINEERING

CISE 201 Introduction to Control and Instrumentation (1-0-1)
Definition and history of Automation. Social and economic dimension of Automation. Types and principles of automation systems, the hierarchy of control and instrumentation, career opportunities and scope of control and instrumentation profession. Skills, ethics, and design process. Case studies: Analysis of representative automation systems in the process industry, manufacturing, management, home and transportation.
Prerequisite: MATH 102

CISE 204 Digital Systems Design (2-3-3)
Note: Not to be taken for credit with EE 200
Prerequisite: PHYS 102

CISE 209 Introduction to Information Technology (2-0-2)
This course introduces the fundamentals of information technology and systems; their structure, and components. The course emphasizes the Enterprise applications of IT in improving the performance of business and industrial systems. In addition, the course introduces the current trends related to information technology, such as the Internet, E-commerce, and wireless communication. The course also gives an insight into security and ethical issues related to information exchange.
Prerequisite: Sophomore Standing

CISE 301 Numerical Methods (3-0-3)
Prerequisite: Math 201, ICS 101 or ICS 102 or ICS 103

CISE 302 Linear Control Systems (3-3-4)
Linear systems, Modeling of physical systems, Ordinary Differential equations models, Laplace Transform, transfer functions, block diagram manipulation. Open loop and closed loop systems, time domain analysis, response of systems to different test signals, Steady state analysis. Concept of stability, Routh-Hurwitz criteria, controller design. Laboratory activities include modeling, analysis and simulation of physical processes.
Prerequisite: MATH 260, EE 202, EE 212

CISE 312 Instrumentation Engineering (2-3-3)
General measurement systems; SI units, errors in measurement systems, static and dynamic modeling of measurement systems, environmental effects, loading effects, noise in measurement

Prerequisite: EE 203

CISE 313 Automation Devices and Electronics (2-3-3)
This is the first level of instrumentation and mechatronics. The course introduces the basic concepts of switching input and output devices, sensing devices, and how they are used in real life automation systems. The course is a prerequisite for the mechatronics course and for the advanced instrumentation course.

Prerequisite: EE 203

CISE 315 Signals and Systems (3-0-3)
Basic models of continuous and discrete-time signals and systems. Basic characteristics of signals (energy, power, peak amplitude). Fourier analysis of continuous and discrete-time signals and systems. Basic concepts of signal sampling and reconstruction. Basic properties of Laplace and Z-transforms and concept of transfer function. Applications of signals and systems concepts to linear control systems and digital signal processing.

Note: Not to be taken for credit with EE 207

Prerequisite: Junior Standing

CISE 316 Control Systems Design (2-3-3)

Prerequisite: CISE 302

CISE 318 Computer Control Systems (2-3-3)
Elements of Computer Control Systems, A/D and D/A, Sampling theorem, signal conditioning, anti-alias filters, sensors, actuators. Discrete time systems, digital control design, digital PID control. Programmable logic controllers, computer control technology including distributed computer control, fieldbus technology, and OLE for process control.

Prerequisite: CISE 302

CISE 350 Begin Cooperative Work (0-0-0)
See contents in CISE 351.

Prerequisite: Same as in CISE 351

CISE 351 Cooperative Work (0-0-9)
The Cooperative Work Program accounts for nine (9) credit hours, involves either a team-based or a single student-based project that is geared toward an integrated application of several pieces of Systems Engineering knowledge learned by the student in his undergraduate education thus far. The co-op project must address technical aspects of the practice of Systems Engineering, including analysis, experimentation and design, by utilizing the problem-solving techniques covered in the various required (core) and elective courses offered at the Systems Engineering department.
Prerequisite: Completion of 85 Credit Hours, Fulfillment of Departmental Requirements, ENGL 214

CISE 352 End Cooperative Work (0-0-0)
See contents in CISE 351.
Prerequisite: Same as in CISE 351

CISE 390 Seminars (0-0-0)
Improve students’ ability in presenting technical work and introduce them to the knowledge of contemporary issues in their field of studies. The course features students’ attendance to seminars, workshops, industrial visits, professional societal meetings, governmental agencies’ conferences. Each student is required to present a written evidence for attending each of an adequate number of seminars and industrial visits at the end of the semester.
Prerequisites: Junior Standing

CISE 399 Summer Training (0-0-0)
Students spend eight weeks in the industry, and submit a report and a presentation at the end of his summer training work.
Prerequisite: Junior Standing, ENGL 214

CISE 412 Mechatronics (2-3-3)
Prerequisite: CISE 313

CISE 414 Embedded Control Systems (2-3-3)
Prerequisite: CISE 204

CISE 418 Industrial Process Control (3-0-3)
Prerequisite: CISE 302
CISE 421 Simulation and Control for Process Industry (3-0-3)
Review of the Fundamental laws, mathematical modeling; model and simulation of typical processes. Computer simulation tools, Virtual Instruments, MMI. Systems identification, IMC, Predictive control, DMC, Neural Network modeling and control. Students will work out simulation and control projects, using DYNSIM process dynamic simulation and Simulink, of typical processes, e.g., CSTR, Gas Surge Drum, Isothermal Chemical Reactor, Vaporizer, Binary Column, Heat Exchanger, etc.
Prerequisite: Senior Standing

CISE 422 Intelligent Controllers (3-0-3)
The course offers an introductory material to advanced control strategies such as fuzzy and neural network based controllers. The need for model–free control, Linguistic based control, foundations of fuzzy set theory. Main approaches of fuzzy control, design issues, fundamental of neural networks, neural networks architecture, neural networks based controller design. Application examples.
Prerequisite: Senior Standing

CISE 423 Model Predictive Control (3-0-3)
The course introduces the concept of model predictive control (MPC), their importance in process industry, implementation issues and application examples. The course covers: model based predictive control, generalized MPC, constrained MPC, some commercial MPC, issues in implementation in industrial control systems and case studies.
Prerequisite: CISE 316

CISE 424 Identification of Linear Systems (3-0-3)
Prerequisite: CISE 301, CISE 318

CISE 431 Industrial Automation (3-0-3)
Prerequisite: Junior Standing

CISE 432 Digital Signal Processing (3-0-3)
Need for, advantages and basic structure of DSP systems. Basic concepts of discrete-time signals and systems. Z-Transform, discrete Fourier Transform (DFT) and frequency analysis of signals and systems. Efficient implementation of DFT: Fast Fourier Transform (FFT) algorithms. Implementation issues of discrete-time systems. Digital filter design techniques. Applications of DSP systems.
Prerequisite: CISE 315

CISE 433 Condition-based Maintenance (3-0-3)
Condition-based maintenance process. Data collection and Analysis process. Decision making. Condition-based monitoring components sensors and software programs. CMMS. Hazard and
reliability functions. Models for CBM. Reliability improvement. Integration of CBM into the control design and operation. Engineering case studies.

Prerequisite: Junior Standing

CISE 434 Computer Numerical Control
(3-0-3)
Prerequisite: CISE 438

CISE 435 Distributed Computer Control Systems
(3-0-3)
Hierarchy of plant communication systems, field equipment, DCS systems, SCADA systems, Supervisory control and production control, Man-Machine Interface (MMI). Local area networks, OSI network architectures, serial communications, IEEE 802.xx standards, Local area networks for industrial applications, Field buses, Hart protocol, Foundation Field Bus, Profibus, CAN bus, etc. Smart instruments. Examples of industrial DCS systems.
Prerequisite: CISE 312

CISE 438 Instrumentation for Process Control
(2-3-3)
Signal conditioning: 4-20 mA circuits, E/I transducers, bridges (AC and DC), design of bridges, operational amplifier circuits, filters (LP & HP), power supplies, reference voltages, analog multiplexer/ de-multiplexers. Data acquisition systems, SCADA Systems, interface cards, isolations, intrinsic safety, Nondestructive testing. Labview, virtual instrumentation, Visual programming, and HMI, Plant network hierarchy, DCS, Data communications, smart transmitters, Field buses, and OPC. Process and Instrumentation diagrams.
Prerequisite: CISE 312 or Approval of the Department

CISE 439 Special Topics in Instrumentation
(3-0-3)
A course in an area of instrumentation reflecting current theory and practice.
Prerequisite: Approval of the Department

CISE 441 Linear Optimal Control
(3-0-3)
Review of state variable models, Review of basic matrix algebra, Static optimization, Formulation of optimal control problems, Principle of optimality. The linear quadratic regulator problem, properties of the algebraic Riccati equation (ARE) The minimum principle and time optimal control problems. Output feedback design. Homework assignments include design and simulation using MATLAB or other similar software packages.
Prerequisite: CISE 316

CISE 442 Stochastic Control
(3-0-3)
Prerequisite: CISE 316

CISE 443 Introduction to Robust Control
(3-0-3)
This course introduces the concepts of uncertainty and Modeling Error in Control System Analysis and Design. Review the basic methods and tools of Classical Control. Robust stabilization, Loop shaping, Introduction to H_{∞} Optimal Control Analysis and Synthesis. Design examples.

Prerequisite: CISE 316

CISE 449 Special Topics in Control
A course in an area of control reflecting current theory and practice.

Prerequisite: Approval of the Department

CISE 451 Introduction to Biomedical Engineering
Basics of anatomy and biological science. Fundamentals of engineering applications in biomedicine. Biomedical instrumentation and information technology, control and communication in biomedicine. eHealth and telemedicine.

Prerequisite: Senior Standing

CISE 452 Theory of Stochastic Systems

Prerequisite: Senior Standing

CISE 453 Methodology for Large Scale Systems

Prerequisite: Senior Standing

CISE 454 Computer-Aided Manufacturing and Robotics

Prerequisite: Senior Standing

CISE 455 Advanced Instrumentation
Micro-machined sensors, Fiber optical sensors, Gas chromatography, Gas detectors, Environment monitoring systems, NMR, Soft-sensing techniques.

Prerequisite: CISE 312

CISE 456 Safety and Reliability of Control Systems
DCS systems, Intrinsic safety, Emergency shutdown ESD systems, reliability of instruments and control systems, MTBF, Redundant systems, Safety standards, Classification of industrial process, Safety integrity levels (SIL), Quantitative risk assessment (QRA), Safety and control networks, Fieldbus for safety systems, Cost benefit analysis, Best practices.

Prerequisite: Junior Standing

CISE 457 Industrial Communication Systems
The course introduces the students to the latest trends in industrial communications systems in a practical theme. The course starts by previewing the main topics in communications systems such as modulation and coding. The course then covers the main communication network standards used in industry. The course covers mainly all data layers from the field instruments to the TCP/IP and world-wide web and even latest wireless data exchange techniques. Case studies of industrial DCS and CIM and their integration with the enterprise networks.

Prerequisite: CISE 318 or Approval of the Department

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISE 459</td>
<td>Special Topics in Automation</td>
<td>(3-0-3)</td>
</tr>
<tr>
<td></td>
<td>A course in an area of automation reflecting current theory and practice.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: Approval of the Department</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISE 490</td>
<td>Senior Design Project</td>
<td>(0-9-3)</td>
</tr>
<tr>
<td></td>
<td>A design course that draws upon various components of the undergraduate curriculum. The project typically contains problem definition, analysis, evaluation and selection of alternatives. Real life applications are emphasized where appropriate constraints are considered. Oral presentation and a report are essential for course completion. The work should be supervised by faculty member(s). Team projects are acceptable wherever appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CISE 390</td>
<td></td>
</tr>
</tbody>
</table>
COMPUTER ENGINEERING

COE 202 Digital Logic Design (3-0-3)
Introduction to information representation and number systems. Boolean algebra and switching theory. Manipulation and minimization of completely and incompletely specified Boolean functions. Physical properties of gates: fan-in, fan-out, propagation delay, timing diagrams and tri-state drivers. Combinational circuits design using multiplexers, decoders, comparators and adders. Sequential circuit analysis and design, basic flip-flops, clocking and timing diagrams. Registers, counters, RAMs, ROMs, PLAs, PLDs, and FPGA’s.
Note: Not to be taken for credit with EE 200. COE 202 and COE 203 together are equivalent to EE 200
Prerequisite: PHYS 102

COE 203 Digital Logic Design Lab (0-3-1)
Introduction to information representation, Signals and bits, Logic implementation using discrete logic components (TTL, CMOS). Introduction to Field Programmable Logic Arrays (FPGAs) design flow: design capture (schematic capture, HDL design entry, design verification and test, implementation (including some of its practical aspects), and debugging. Use of CAD tools to design, simulate and implement digital logic circuits on FPGA prototyping boards.
Note: Not to be taken for credit with EE 200. COE 202 and COE 203 together are equivalent to EE 200
Corequisite: COE 202

COE 241 Data and Computer Communications (3-0-3)
Prerequisite: MATH 102

COE 300 Principles of Computer Engineering Design (1-3-2)
Practical and professional skills necessary for the COE practice. Design projects successful execution steps. Team work, project management and professional communication skills. Codes of professional conduct, ethics & responsibility.
Prerequisite: Junior Standing

COE 301 Computer Organization (3-3-4)
Introduction to computer organization, machine instructions, addressing modes, assembly language programming, integer and floating-point arithmetic, CPU performance and metrics, non-pipelined and pipelined processor design, datapath and control unit, pipeline hazards, memory system and cache memory.
Prerequisite: COE 202, ICS 102

COE 306 Introduction to Embedded Systems (3-3-4)
conversion Embedded system design methodologies. Specifications. Designing robust software for embedded systems. RTOS features.

Prerequisites: COE 203, COE 301

COE 344
Computer Networks
(3-3-4)
TCP/IP top-down approach. Introduction to computer networks. Application layer design issues and protocols. Transport layer design issues, protocols and congestion control mechanisms. Socket programming. Analysis of the Network layer design issues, and internetworking. MAC layer design issues and protocols. Multimedia network applications are explored.

Note: Not to be taken for credit with ICS 342.

Prerequisite: COE 241, STAT 319

COE 350
Begin Cooperative Work
(0-0-0)
See contents in COE 351.

Prerequisite: Same as in COE 351

COE 351
Cooperative Work
(0-0-9)
A continuous period of 28 weeks spent in industry with the purpose of acquiring practical experience in different areas of Computer Engineering. During this period, a student is exposed to the profession of Computer Engineering by working in the field. Students are required to submit a final report and give a presentation about their experience and the knowledge they gained during their cooperative work.

Prerequisite: ENGL 214, Completion of 90 credit hours

COE 352
End Cooperative Work
(0-0-0)
See contents in COE 351.

Prerequisite: Same as in COE 351

COE 353
Fundamentals of Computer Communications
(3-0-3)

Note: Not to be taken for credit with COE 241, Not open for COE students.

Prerequisite: Junior Standing

COE 399
Summer Training
(0-0-0)
The aim of the summer training is to provide students with direct on-the-job experience working with professionals in the field. This training provides an opportunity to expose students to the reality of professional practice. Students are required to submit a report and make a presentation on their summer training experience and the knowledge gained.

Prerequisite: ENGL 214, Junior Standing, Approval of the Department

COE 402
Computer System Performance Evaluation
(3-0-3)

Prerequisites: STAT 319 or Consent of the Instructor
COE 403 Computer Architecture (3-0-3)
Fundamentals of computer design, power, cost, performance, instruction set principles, instruction and arithmetic pipelines, dynamic and speculative execution, precise exception, memory hierarchy, multilevel caches, virtual memory, storage and I/O, multicores, multiprocessors, and clusters, New trends in computer architecture.
Prerequisite: COE 301

COE 405 Design and Modeling of Digital Systems (3-0-3)
Review of sequential circuits design and analysis, Data path and control unit design, Design with Hardware Description languages, Design with Field-Programmable Gate Arrays (FPGAs), Block interfacing, and high-level-synthesis.
Prerequisite: COE 202

COE 408 Reconfigurable Computing (3-0-3)
Prerequisite: COE 405

COE 420 Parallel Computing (3-0-3)
Prerequisite: COE 301

COE 421 Fault Tolerant Computing (3-0-3)
Prerequisite: Senior Standing

COE 422 Real Time Systems (3-0-3)
Introduction to real-time systems. Uniprocessor scheduling of independent tasks, hard versus soft real time, reference model, dynamic scheduling, utilization-based schedulability, demand-based scheduling, static priority systems, deadlines, and fairness. Basic operating-system functions needed for real-time computing, real-time and non-real-time operating systems. Advanced scheduling: preemptive versus non-preemptive scheduling, dynamic versus static priorities, synchronous versus asynchronous job releases. Multiprocessors and distributed systems, priority ceiling protocol and end-to-end scheduling.
Prerequisite: COE 306

COE 423 Distributed Systems (3-0-3)
Theory and practice in the design and implementation of distributed computing systems are covered, including interprocess communication, remote procedure calls, distributed file systems,
synchronization, distributed transactions, replicated data, security and specifications for distributed programs. Programming assignments include using current distributed technologies (sockets). Real-world distributed systems case studies, and examples ranging from the Internet to file systems. This course is intended to prepare students to work on corporate software development teams developing enterprise applications.

Note: Not to be taken for credit with ICS 437.

Prerequisite: Senior Standing

COE 424
Introduction to Smart Cards & RFID Technology
(3-0-3)
Overview of different types of smart cards, smart card applications, architectures, standards, operating systems, security, management and fabrication. RFID concepts and fundamentals including: components of RFID systems, architectures, middleware functionality, and related standards. RFID RLTS (Real Time Location Systems) and ubiquitous computing. Privacy and security techniques, engineering design tradeoffs in designing both smart card and RFID systems.

Prerequisite: Senior Standing or Consent of the Instructor

COE 425
Data Management Systems
(3-0-3)

Prerequisites: Junior Standing or Consent of the Instructor

COE 441
Local Area Networks
(3-0-3)

Prerequisite: COE 241 or Consent of the Instructor

COE 443
High Speed Networks
(3-0-3)

Prerequisite: COE 344

COE 444
Internetwork Design and Management
(3-0-3)

Prerequisite: COE 344
COE 445 Internet Engineering and Technologies (3-0-3)
Prerequisite: COE 344

COE 446 Mobile Computing (3-0-3)
Introduction to different types of mobile computing; cellular networks, wireless mobile ad hoc and sensor networks, wireless LAN and so on. Discussion of different IEEE standardized protocols and their implementation and performances. New wireless technologies such as LTE and LTE advance. Quality of Service (QoS) issues. Modeling and optimization methods of wireless protocols.
Prerequisite: COE 344

COE 447 Fundamentals of Optical Networking (3-0-3)
Prerequisite: COE 344 or Consent of the Instructor

COE 451 Computer & Network Security (3-0-3)
Note: Not to be taken for credit with ICS 444.
Prerequisite: COE 344

COE 461 Principles of VLSI Design (3-0-3)
State-of-the-art MOS Transistors, their operation and limitations. CMOS digital circuits, static & dynamic logic, combinational and sequential circuits. Circuit design and propagation delay. CMOS fabrication technology, layout and design rules, stick diagrams, IC Design and Verification Tools, subsystem design and case studies, and practical considerations.
Prerequisite: EE 203

COE 462 Design Automation of VLSI Circuits (3-0-3)
Prerequisite: COE 461 or Consent of the Instructor

COE 464 Testing of Digital Circuits (3-0-3)
Introduction to the testing problem, fault modeling: stuck-at, bridging, transistor-open and transistor-short faults, delay faults. Fault simulation, Test generation for Combinational circuits,
Test generation for sequential circuits, Design for testability, Built-in self test, Delay fault testing. New trends in testing.

Prerequisite: Senior Standing

COE 465 VLSI System Design Methodology (3-0-3)
CMOS VLSI system design options; Full-custom and semicustom designs. Design flows of ASICs; front-end and back-end design flows. Design & verification CAD tools. Chip Layout, place and route and design rules checking. Concepts and tools in floor planning, placement and routing, layout generation and design synthesis. The course stresses hands-on experience of VLSI design using CAD tools.

Prerequisite: COE 405

COE 482 Pervasive and Ubiquitous Computing (3-0-3)
Introduction to ubiquitous and pervasive computing. Designing, building and evaluating ubiquitous computing technologies in order to create novel user experiences. Capturing and disseminating context information through sensors and sensor networks. Sensor network coverage, localization, synchronization, sleep scheduling, connectivity, routing, energy efficiency, data centric and transport protocols, Context-aware applications and intelligent objects and applications.

Prerequisite: COE 344

COE 484 Introduction to Robotics (3-0-3)
Taxonomy of robots, Internet robotics, autonomous robots, robotic sensor networks, and applications. Motion, linear algebra, motion coordination, singularities, and multiple solutions. Vision, sensing and perception, robot vision and programming, self-localization, Kalman and Monte-Carlo approaches. Intelligence, Autonomous robotics, robot mechanisms and control, control and planning architectures, reactive, subsumptive, and deliberative control behaviors, behavior-based control programming. Humanoid robots. Introduction to multi-robot systems.

Prerequisite: Senior Standing

COE 485 Senior Design Project (1-6-3)
Various design phases leading to a practical engineering solution. Feasibility study, preparation of specifications, and the methodology for the design. Detailed design and implementation, testing, debugging, and documentation.

Prerequisite: Senior Standing

COE 487 Computer Vision Processing (3-0-3)
Introduction to the concepts and applications in computer vision. Cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection and human motion categorization.

Note: Not to be taken for credit with ICS 483.

Prerequisite: Senior Standing

COE 488 Data Acquisition Interfacing (3-0-3)
Data acquisition systems, basic sampling concepts, data collection fundamentals. Interfaces. Special instruments. IEEE standards. RS 232C data acquisition software technique. I/O operation queueing. Hardware for data acquisition systems. Examples and designs.

Prerequisite: COE 301
CITY PLANNING

CP 101 Introduction to City Planning (3-0-3)
Objectives of planning, forming the goals, defining the approaches and methods in the context of socio-economic activities and historical development of Cities and Regions.

CP 201 Planning Theory (3-0-3)
Introducing planning theories as instruments and rational decision making activity to bring physical and social changes to achieve a set of goals through recognized models: comprehensive incremental; advocate; descriptive; predictive etc.

CP 202 Planning Laws and Legislation (3-0-3)
An overview of planning laws and legislation and a short history of planning process. Methods, techniques and instruments for implementing plans through decrees and administrative acts, the basis for urban and regional planning and its relation to Shariah Law as well as the structure and organization of Saudi public planning administration. Discussion of zoning procedures, subdivision review practices and budget preparation and execution.
Corequisite: CP 101

CP 203 Introduction to Spatial Database Management Systems (3-0-3)
Introduction to spatial DBMS, relational databases, relational algebra, SQL, entity relationship Model. Theory of database design, physical database design, examples of DBMS.
Corequisite: ICS 101 or ICS 102 or ICS 103

CP 204 Land Use Planning (3-0-3)
Land use distribution of urban and regional functions. Location theory, infrastructure systems and municipal and Regional Models.
Prerequisite: CP 101

CP 205 Urban Economics (3-0-3)
Microeconomics principles to understand the economic nature of urban areas. Urban growth in the context of location theory. Agglomeration economies in relation to land use pattern and transportation cost. Urban economics problems within the context of the theory of public goods.

CP 206 GIS I (2-3-3)
GIS definition, history, and functional elements. Data input and output, data management and data analysis. Introduction to most commonly used GIS packages. Hands-on experience on selected GIS software. GIS applications in planning. GIS planning and implementation. Case studies of GIS adoption and application in Saudi Arabia and abroad are presented.
Corequisite: ICS 101 or ICS 102 or ICS 103

CP 210 Planning Workshop I (1-9-4)
Introduction of students to methodology of collecting and analyzing data about a local study area to examine the relative problem solving in situations of functional and normative requirements. Integration of analysis, programming, implementation, and presentation of phases of the planning process. The workshop includes graphical presentation of the project. Each student chooses a distinct local study area as his project.
Prerequisite: CP 101, ARC 100

CP 301 Urban Survey Methods (3-0-3)
Design of surveys, including the preliminary planning of surveys, selection of survey methods, sampling procedures, survey instrument (questionnaire) design, pilot surveys, administration of surveys, and data processing. Computer applications in surveys, including internet-based surveys will also be covered.

Prerequisite: STAT 211

CP 302 Introduction to Environmental Planning (2-0-2)
Effects of planning on the natural environment. Planning tools and skills to protect, preserve, sustain, and restore environmental resources. Introductory aspects of environmental assessment and sustainable development.

CP 303 Introduction to Cartography & Remote Sensing (2-3-3)
Cartographic concepts and principles, map design, thematic mapping, computer-aided mapping, symbolization, and map coordinate systems and projections. Basis of remote sensing; photogrammetric systems; space borne sensors and platforms; fundamentals of analyzing remotely sensed data, data integration. Methodology for surveying and analyzing geographical phenomena. Various sensor families such as LANDSAT, Spot, IKONOS and other remote sensing satellites.

Prerequisite: CE 261

CP 306 Quantitative Methods in Planning (3-0-3)
Application of different quantitative methods in city planning, including analysis of variance, correlation analysis, regression analysis, time series, Bayesian decision-making, extrapolation techniques, and forecasting methods.

Prerequisite: STAT 211

CP 307 Transportation Planning (3-0-3)
Urban transportation planning process, travel demand modeling, data needs, trip generation, trip distribution, modal choice, and network assignment. Local case studies will be emphasized, and specialized software packages will be utilized.

CP 308 GIS II (2-3-3)
Spatial data models, GIS Analysis Functions, System Configuration and Data Communications. Internet GIS, User Requirement Analysis (URA), Metadata Requirements, and Spatial data standards. Advanced GIS software will be used. Students will carry out a comprehensive GIS-related project by utilizing knowledge acquired in this course and previous GIS-related courses.

Prerequisite: CP 203

CP 310 Planning Workshop II (1-9-4)
All the students participate in the project and integrate their projects in Planning Workshop I to the City scale. In this project, students should define the functions of the city and the social and economical activities of the city and their manifestation and realization in space.

Prerequisite: CP 210

CP 315 Planning Workshop III (1-9-4)
Several options are offered each year, such as regional planning, housing, metropolitan planning, and urban design. All students participate in the project through an inter-disciplinary approach based on the experience gained in previous courses.

Prerequisite: CP 310

CP 350 Begin Cooperative Work (0-0-0)
See contents in CP 351.
Prerequisite: Same as in CP 351

CP 351 Cooperative Work (0-0-9)
A continuous period of 28 weeks spent in industry with the purpose of acquiring practical experience in different areas of city planning. During this period, a student is exposed to the profession of city planning by working in the field. Students are required to submit a final report and give a presentation about their experience and the knowledge gained during their cooperative work.
Prerequisite: Junior Standing, ENGL 214

CP 352 End Cooperative Work (0-0-0)
See contents in CP 351.
Prerequisite: Same as in CP 351

CP 399 Summer Training (0-0-0)
The aim of summer training is to provide students with direct on-the-job experience working with professional in the field. This training, which lasts for minimum of eight weeks, provides an opportunity to expose students to the reality of professional practice. Students are required to submit a report and make a presentation on their summer training experience and the gained knowledge.
Prerequisite: Junior Standing, ENGL 214

CP 401 Senior Planning Project Preparation (1-0-1)
This course is designed to help the senior student to prepare his proposal for the final project in CP 499. In this course the student will carry out research on a selected topic in the area of city planning of his choice and approved by the course instructor. The student will write a complete proposal including statement of the problem, objectives of the project and its justification, methodology, data collection and project outline.
Prerequisite: CP 315

CP 402 Sustainable Development (2-0-2)
Development with the most efficient utilization of natural resources. Balance between market, social, and environmental values throughout the process.
Prerequisite: CP 302

CP 410 Planning Workshop IV (1-9-4)
This course is an exercise on applied professional planning. Utilizing a local study area the course focuses on the applications of city planning theories, concepts, and methods to the solutions of actual planning problems including data collection, analysis, preparation of development plans, policies, and recommendations; computer applications will be made when appropriate.
Corequisite: CP 401
CP 421 Urban Infrastructure Systems (3-0-3)
Introduction to transportation systems, transportation costs, and effect on land use planning. Other elements of the general plan: electricity, gas, and communications services systems. Storm drainage, sewage and waste disposal. Introduction to standards and control regulations.
Prerequisite: Senior Standing

CP 422 Public Works Administration (3-0-3)
An analysis of the administrative structure and administrative practices with emphasis on finance, personnel, public safety, utilities, and public infrastructure.
Prerequisite: Senior Standing

CP 423 Development Impact Assessment (3-0-3)
Principles of impact assessment, development impact assessment methods; cost-benefit analysis, environmental impact assessment, and balance sheet.
Prerequisite: Senior Standing

CP 424 Evaluation and Appraisal (3-0-3)
Techniques and methods for assessment of different plans, programs, and public policies. Cost effectiveness, goal achievement, cost benefit, and cost revenue analysis. Pre and post implementation evaluation.
Prerequisite: Senior Standing

CP 425 Urban Modeling (3-0-3)
Location theory, geographical and gravitational models, population projection, travel behavior and transportation systems, regional models and economic base models.
Prerequisite: Senior Standing

CP 426 Internet GIS (3-0-3)
Introduction to Internet GIS; applications of Internet GIS in City and Regional Planning; use of software to create applications for the web that have interactive GIS functionality; advantages of using Internet GIS in public and private sectors.
Prerequisite: CP 203

CP 427 Analysis and Modeling (3-0-3)
Concepts and principles of analysis and modeling of spatial data. Students will gain knowledge of different spatial data modeling techniques used in GIS through lecture, assignments and computer exercises. Student will be able to design, implement and solve a given spatial problem utilizing GIS.
Prerequisite: CP 203

CP 428 GIS in Space Syntax (3-0-3)
Introduction to space syntax concepts; application packages; use of Axwoman and Isovist analyst extensions in ArcView GIS; pedestrian and vehicular systems; modeling and analysis of urban areas and building interiors; integration of syntactic models with other GIS spatial models; techniques of reporting findings; other quantification techniques applicable to GIS concepts.
Prerequisite: CP 203
CP 429 Geo-statistical Analysis (3-0-3)
Role of computers in geographic analysis. Data sampling and descriptive and inferential statistical techniques for analyzing geographic data. Graphic techniques, tests of hypothesis, simple regression, and the analysis of variance. Interpretation and presentation of appropriate spatial and non-spatial statistics.
Prerequisite: CP 203

CP 430 GIS in Transportation (2-3-3)
GIS applications in various areas within transportation (GIS-T), including transportation planning, transportation engineering, mass transit, railroads, and intelligent transportation systems (ITS). Linear referencing systems and dynamic segmentation data model will be thoroughly discussed.
Prerequisite: CP 203

CP 431 GIS in Utilities Management (3-0-3)
Prerequisite: CP 203

CP 432 Special Topics in GIS (3-0-3)
Topics of this course are to be selected from special topics in GIS.
Prerequisite: CP 203

CP 490 Special Topics in City Planning (3-0-3)
Topics of this course are to be selected from the broad areas of City planning.
Prerequisite: Senior Standing

CP 499 Senior Planning Project (1-9-4)
The senior student will be required to work on a planning project of the topic developed during CP 401 Senior Planning Project Preparation. The objective of the course to demonstrate the student knowledge and skills acquired during his four years of city planning studies. At the end of the semester, the student is expected to submit a complete and detailed planning project of high quality utilizing planning tools, techniques and methods.
Prerequisite: CP 401
ECONOMICS

ECON 101 Principles of Economics I (Microeconomics) (3-0-3)
The fundamentals of microeconomics. The roles of the market price system in managing the use of society’s resources and in rationing available supplies. The efficiency of resource management is examined in the light of a variety of more or less competitive market environments. Consumer behavior, consumer and market demand, concepts of elasticity, cost, production and factor pricing in perfect and imperfect competition, monopoly, monopolistic competition, oligopoly, regulation and economic policy, economic efficiency and productivity, social costs and benefits, and public goods and externalities.

ECON 102 Principles of Economics II (Macroeconomics) (3-0-3)
Basic principles of macroeconomics from a market economics perspective with a focus on current macroeconomic policy issues and data. National income accounts, business cycles, unemployment and inflation, money and banking, fiscal and monetary policies, government debt and policies, economic growth and development, and international trade.

ECON 206 Economy of Saudi Arabia (3-0-3)
Analysis of economic structures, policies and performance of the Saudi Arabian economy, in its evolutionary phases and current challenges. Topics covered include national income accounting; aggregate demand and its component parts. The labor market and the issue of Saudization; key sectors of the economy including crude oil, agriculture, manufacturing, and services, with particular reference to the evolving capital and financial markets. International trade, public finance, fiscal and monetary policies, the role of economic planning in Saudi development, the SME sector and privatization. The impact of globalization, WTO accession, FDI and GCC regional economic integration.
Prerequisite: ECON 101, ECON 102

ECON 301 Intermediate Microeconomic Theory (3-0-3)
Theory of consumer behavior; demand and supply analysis; theory of cost and production; pricing theory in factor markets; different market structures such as perfect competition, monopoly, monopolistic competition, and oligopoly; general equilibrium analysis; elements of game theory; microeconomic policy; regulations; social costs and benefits.
Prerequisite: ECON 101, ECON 102

ECON 302 Intermediate Microeconomic Theory (3-0-3)
The study of aggregate economic performance, including both long run growth and short-run fluctuations. The various measures of national output in closed and open economies. Aggregate demand and aggregate supply analysis; Keynesian general equilibrium analysis; consumption function, investment function, government expenditure, aggregate production function; economic stabilization, monetary and fiscal policy analysis; alternative macroeconomic paradigms – Classical, Keynesian, Monetarist, Neo-Classical, Neo-Keynesian, and Real Business Cycle; international trade, exchange rate, and balance of payments analysis; income and employment determination, unemployment and inflation, introduction to international financial and development organizations.
Prerequisite: ECON 101, ECON 102

ECON 305 Money and Banking (3-0-3)
The history of money and its role; the role of money in macroeconomic policies; monetary policy and the role of money in the determination of output, prices, and interest rates.
Theories of supply of and demand for money; overview of the banking system; role of the central bank in the financial system and as executor of monetary policy; monetary policy tools and practices; analysis of inflation and unemployment; international monetary system.

Prerequisite: ECON 101, ECON 102

ECON 330 Labor Economics (3-0-3)
An introductory course which presents basic concepts, theories, and analytical techniques in labor economics. Topics covered in this course include an overview of the labor market in general and the Saudi labor market in particular; labor demand and its elasticities; Saudi supply of labor, foreign supply of labor in the Saudi labor market; compensating wage differentials; investment in human capital (education & training); worker mobility – migration & labor turnover; wage determination; inequality in earnings; types of unemployment; inflation; and policy implications.

Prerequisite: ECON 101, ECON 102

ECON 401 Managerial Economics (3-0-3)
Application of economic theory and decision science methods to solve managerial problems. Topics include demand analysis; demand estimation; cost and production analysis; optimization methods, linear programming applied to managerial decision making problems; market structures and managerial decisions, pricing practices, business investment decisions; present value and cost-benefit methods; risk and uncertainty; capital budgeting process, and the role of government in the market economy.

Prerequisite: ECON 101, ECON 102

ECON 410 International Economics (3-0-3)
The major focus of this course is to help enhance students' understanding of international economic issues and policies based on international trade and monetary theories. Special references will be made to the Saudi Arabian economy. The course covers the classical theories of international trade; Heckscher-Ohlin and modern theories; tests of trade models; tariffs and protection; economic integration; current international economic issues; introduction to international finance and balance of payments; theories of balance of payments and exchange rates; international monetary systems; foreign exchange market; international parity conditions; managing foreign exchange risk; optimum currency areas.

Prerequisite: ECON 101, ECON 102

ECON 415 Public Finance (3-0-3)
Analysis of taxation and government expenditure policies. Public budgeting; different types of market imperfections and failures; role of the public sector; cost-benefit analysis; principles of public expenditure analysis and evaluation; social security and income transfer programs.

Prerequisite: ECON 101, ECON 102

ECON 420 Islamic Economics (3-0-3)
Importance of Islamic Economics, its ideological and philosophical foundations, the approach to economic problems and solutions from the Islamic perspectives as compared to other schools of thought. Property and distribution, taxation in terms of equity and efficiency, general principles about interest, money and its nature, functions and the verdict in Islam, modern money and financial system from an Islamic viewpoint, a proposal for reform and monetary policy.
Prerequisite: ECON 305

ECON 425 Economic Development *(3-0-3)*
Economic development theory as applied to the unique problems facing developing economies of Asia, Africa, and Latin America. Understanding the different types of growth and developmental theories, compare and contrast between different economies, identify the role of population growth, education, health care, and other parameters in the development process. Mathematical and graphical tools in the measurement and analysis of development. Political economy, international trade, and fiscal policies for development.
Prerequisite: ECON 101, ECON 102

ECON 450 Introduction to Energy Economics *(3-0-3)*
Analysis of energy resources (such as petroleum, coal, gas, and electricity, renewable resources). Analysis of demand for and supply of energy sources (oil in particular, under the assumption of the theory of cartels, such as, a dominant firm and OPEC). Analysis of short- and long-run costs of investments in resources under uncertainty. Energy, environment and climate change issues. Energy futures and options markets for managing risks. Energy and its derivatives; economics of energy security. Case study on the energy sector of the Saudi Economy.
Prerequisite: ECON 101, ECON 102, ECON 206
ELECTRICAL ENGINEERING

EE 200 Digital Logic Circuit Design (3-3-4)
Note: Not to be taken for credit with COE 202 and COE 203
Prerequisite: MATH 101

EE 202 Electrical Circuits I (3-0-3)
Prerequisite: MATH 102, PHYS 102

EE 203 Electronics I (3-3-4)
Opamp Linear Applications. PN junction and zener diode. Diode basic circuit analysis and diode applications (rectifier and limiters). MOSFET and BJT (DC, small signal analysis). Amplifier configurations and characteristics. CMOS digital circuits.
Prerequisite: EE 202

EE 204 Fundamentals of Electrical Circuits (2-3-3)
Note: For non EE Students
Prerequisite: MATH 102, PHYS 102

EE 206 Introduction to Electrical Engineering (2-0-2)
Introduction to fundamentals of EE: circuits, energy, communication, control, signal processing, electromagnetics, electronics, and digital systems. Computational techniques. Instrumentation and measurement. Introduction to technology and applications.
Prerequisite: PHYS 102

EE 207 Signals and Systems (3-0-3)
Note: Not to be taken for credit with CISE 315
Prerequisite: EE 202, EE 206

EE 212 Electrical Circuits Laboratory (0-3-1)
The course consists of a set of laboratory experiments for students to gain hands-on experience in electrical circuits so that they are able to put theoretical concepts into practice. The experiments are designed to help students understand the basic principles of electric circuits as well as giving them insight on design, simulation and hardware implementation of circuits.
Note: For non EE Students
Corequisite: EE 202

EE 213 Electrical Circuits II
(2-3-3)
Prerequisite: EE 202

EE 303 Electronics II
(3-3-4)
Prerequisite: EE 203

EE 306 Electromechanical Devices
(2-3-3)
Note: For non EE Students
Prerequisite: EE 203

EE 308 Building Electrical Systems Design
(2-0-2)
Electrical symbols and Wiring Layout and Applications. Conductors, Fuses, and Circuit Breakers. Introduction to building wiring system: design elements, design procedures and calculation, and National Electrical Code requirements. Types and determination of number of branch circuits required. Basic electrical system design for residential, office and commercial buildings. Building Management Systems (BMS). The course features an electrical design project where students are required to develop and present a basic set of electrical design documents for a medium-size building.
Note: For ARE Students Only
Prerequisite: EE 204

EE 311 Fundamentals of EE Design
(2-0-2)
Prerequisite: EE 203, EE 207

EE 315 Probabilistic Methods in Electrical Engineering
(3-0-3)
Note: Not to be taken for credit with STAT 319
Prerequisite: EE 207

EE 340 Electromagnetics
(3-3-4)
Electrostatics: Coulomb's law, Gauss's law, electric potential, electric dipoles, resistance, capacitance. Magnetostatics: Biot-Savart law, Ampere's law, Magnetic forces. Magnetic

Prerequisite: EE 202, Math 302

EE 350
Begin Cooperative Work
(0-0-0)

See contents in EE 351.

Prerequisite: Same as in EE 351

EE 351
Cooperative Work
(0-0-9)

A continuous period of 28 weeks spent in the industry working in any of the fields of electrical engineering. During this training period, the student is exposed to the profession of electrical engineering through working in many of its fields. The student is required to submit, and present, a formal written report of his work.

Prerequisite: Fulfilling University as well as EE Department Requirements, ENGL 214

EE 352
End Cooperative Work
(0-0-0)

See contents in EE 351.

Prerequisite: Same as in EE 351

EE 360
Electric Energy Engineering
(3-3-4)

Prerequisite: EE 213

EE 370
Communications Engineering I
(3-3-4)

Prerequisite: EE 207, EE 203

EE 380
Control Engineering I
(3-3-4)

Prerequisite: EE 207

EE 390
Digital Systems Engineering
(3-3-4)

Prerequisite: ICS 103, EE 200

EE 399
Summer Training
(0-0-0)

A continuous period of 8 weeks of summer training spent in the industry working in any of the fields of electrical engineering. The training should be carried out in an organization with
an interest in one or more of these fields. On completion of the program, the student is
required to submit a formal written report of his work.
Prerequisite: ENGL 214, EE 311

EE 400 Telecommunication Networks (3-3-4)
Note: Not to be taken for credit with COE 344

Prerequisite: EE 315, EE 370

EE 402 Control Engineering II (3-0-3)

Prerequisite: EE 380

EE 405 Microwave Transmission (3-3-4)

Prerequisite: EE 340

EE 406 Digital Signal Processing (3-0-3)

Note: Not to be taken for credit with CISE 432

Prerequisite: EE 207

EE 407 Microwave Engineering (3-3-4)

Prerequisite: EE 340

EE 410 Digital Image Processing (3-0-3)

Note: Not to be taken for credit with COE 487

Prerequisite: EE 207
EE 411 Senior Design Project (1-6-3)
A course that integrates various components of the curriculum in a comprehensive engineering design experience. Design of a complete project including establishment of objectives and criteria, formulation of design problem statements, preparation of engineering designs. The design may involve experimentation, realization and/or computer project. Team design projects, where appropriate, are highly encouraged.
Prerequisite: EE 311, Senior Standing

EE 417 Communication Engineering II (3-0-3)
Prerequisite: EE 315, EE 370

EE 418 Introduction to Satellite Communications (3-0-3)
Prerequisite: EE 340, EE 370

EE 419 Wireless Communication (3-0-3)
Prerequisite: EE 315, EE 370

EE 420 Optical Fiber Communications (3-3-4)
Prerequisite: EE 340, EE 370

EE 421 Photonics and Optical Communications (3-0-3)
Review of basics of optics including photon-matter interaction, interference, diffraction, coherence, polarization, etc. Introduction to geometrical optics. Light sources and transmitters. Optical detectors and receivers. Optical waveguides and optical fibers. Optical devices: amplifiers, filters, isolators, diffraction gratings, switches, polarization controllers and modulators. Operating principles of optical multiplexers and demultiplexers. Review of important concepts of digital communications including TDM, WDM and DWDM. Channel Dispersion. Overview of the design process of a point-to-point optical link.
Prerequisite: EE 340, EE 370

EE 422 Antennas (3-3-4)

Prerequisite: EE 340

EE 425 Integrated Circuits Analysis and Design (3-0-3)

Prerequisite: EE 303

EE 426 Mixed Mode Signal Processing Circuits (3-0-3)

Prerequisite: EE 207, EE 303

EE 429 Microcomputer Organization (3-3-4)

Prerequisite: EE 390

EE 430 Information Theory and Coding (3-0-3)

Prerequisite: EE 315, EE 370

EE 432 Digital Control Systems (3-3-4)

Prerequisite: EE 380

EE 433 Applied Control Engineering (3-3-4)
Prerequisite: EE 380

EE 434 Industrial Instrumentation (2-3-3)
Introduction to measurements systems and basic definitions. Sensors (temperature, humidity, light, piezoelectric, hall effect, pressure, flow and strain gauges) and, signal conditioning circuits (bridge, instrumentation amplifier, scaling circuits, comparators, A/D and D/A, 555 timer). Remote control. Ultrasound systems. Measurements techniques (temperature and humidity measurements, level and displacement measurement, pressure and flow measurement). Introduction to foundation field bus.

Prerequisite: EE 200, EE 303

EE 441 RF and Microwave Transceivers Design and Analysis (3-0-3)
Tx and Rx architectures, RF link and RF budget, Noise analysis, Linearity analysis, System level design, Microwave measurements for transmitters characterization, CAD tools with application to system level design and analysis, Linear amplifier design (power and LNA), Design case studies.

Prerequisite: EE 340

EE 445 Industrial Electronics (3-3-4)

Prerequisite: EE 303

EE 446 Programmable Logic Controllers and applications (2-3-3)
Basic concepts of microcontrollers. The structure of programmable logic controllers: I/O, relays, counters and timers. Ladder diagram concepts. PLC’s intermediate and advanced functions. PLC’s data sets and data manipulations. PLC’s industrial applications in the process control. Concepts of PLC’s communications.

Prerequisite: Senior Standing

EE 455 Analog Communication Electronics (3-3-4)

Prerequisite: EE 303, EE 370

EE 456 Digital Communication Electronics (3-3-4)

Prerequisite: EE 303, EE 370

EE 460 Power Electronics and Power Quality (3-3-4)
Power electronic devices. DC and AC power electronics converters. Fundamental of power quality and system harmonics effects and mitigation. Power quality standards.

Prerequisite: EE 360

EE 462
Electric Machines and Drives
AC/DC machines dynamics. Fractional horsepower and special type machines. Integration of electric machines and control systems. AC/DC electric drives. Speed / position control. Computer simulation.
Prerequisite: EE 360, EE 380

EE 463
Power System Analysis
Prerequisite: EE 360

EE 464
High Voltage Fundamentals and Applications
Prerequisite: EE 360

EE 465
Power Transmission and Distribution
Prerequisite: EE 360

EE 466
Power System Protection
Prerequisite: EE 360

EE 467
Power System Planning & Operation
Prerequisite: EE 360

EE 468
Renewable Energy
Electric energy from renewable energy sources including solar, wind, and fuel cells. Characteristics of direct conversion, energy conversion and storage systems. Issues related to integration of small scale energy sources into electricity grid. Smart grids.
Prerequisite: EE 360

EE 470
Introduction to Optical Electronics

Prerequisite: EE 340, EE 303

EE 497 Special Topics in Electrical Engineering I (3-0-3)
The contents of this course will be in the areas of interest in electrical engineering. The specific contents will be given in detail at least one semester in advance of that in which it is offered.

Prerequisite: Senior Standing or Consent of the Instructor

EE 498 Special Topics in Electrical Engineering II (3-0-3)
The contents of this course will be in the areas of interest in electrical engineering. The specific contents will be given in detail at least one semester in advance of that in which it is offered.

Prerequisite: Senior Standing or Consent of the Instructor

EE 499 Special Topics in Electrical Engineering III (3-0-3)
The contents of this course will be in the areas of interest in electrical engineering. The specific contents will be given in detail at least one semester in advance of that in which it is offered.

Prerequisite: Senior Standing or Consent of the Instructor
ENGLISH

ENGL 00-xx Preparatory English 0
(15-5-0)
Introduction to basic sentence formation, speaking, listening, and reading skills. The main emphasis is on elementary speaking skills. The course helps students to develop an understanding of basic language concepts. It is designed for students who are not presently prepared to study in a preparatory year program. The aim is to ensure students enter the main four components of the Prep Year program with basic skills necessary for success. Materials used are at the A-1 level according to the Common European Framework (CEF).

ENGL 01-xx Preparatory English I
(15-5-4)
It is considered the academic starting-point of the Preparatory English Program. Elementary skills with an emphasis on structured reading and listening texts are employed with an emphasis on skill development. Students will study basic sentence structure and be introduce essay formation. Materials used are at a CEF A-1 /A-2 level.

ENGL 02-xx Preparatory English II
(15-5-4)
Pre-Intermediate skill development in structured reading and listening texts will be emphasized. Students will also study basic essay formation. Materials used are at a CEF A-2 /B-1 level.
Prerequisite: ENGL 01-xx

ENGL 03-xx Preparatory English III
(15-5-4)
Intermediate skills with an emphasis on near native reading and listening texts are employed. Students will study academic essay writing and Introductory TOEFL preparation is stressed. Materials used are at a CEF B-1 level.
Prerequisite: ENGL 02-xx

ENGL 04-xx Preparatory English IV
(15-5-4)
This course completes the English component of the Preparatory English Program. Upper Intermediate skills with an emphasis on reading, listening, writing and TOEFL preparation are stressed. The aim is to ensure students are fully prepared to study at a university in the medium of English. Materials used are at a CEF B-2 level.
Prerequisite: ENGL 03-xx

ENGL-EP English Proficiency
(6-0-2)
This course is intended to prepare students to meet the minimum English language requirements before pursuing their undergraduate studies at KFUPM. The course is designed to reinforce the core academic English skills in ENGL 04. Topics covered include: academic lexis; prefix, root and suffix morphology; skills-based techniques for reading academic texts; skills-based techniques for listening to lectures; and spoken and written discourse production. The course duration is seven and a half weeks. When the course is registered concurrently with ENGL 04, the passing criterion is the minimum TOEFL score specified by the university.
Corequisite: ENGL 04
ENGL 101 Introduction to Academic Discourse (3-0-3)
Introduction to academic writing and reading: Writing process, draft writing, peer editing, and error recognition and correction. Writing styles covered: definition, description, exemplification, comparison, causal analysis, and argumentation. Organisational and grammatical elements. Improvement of reading skills; comprehension, skimming, scanning, meaning from context, lexis and acquisition of academic vocabulary.

Prerequisite: ENGL-EP

ENGL 102 Introduction to Report Writing (3-0-3)
Introduction to process of report writing: theme-based, and basic library research, finding, note taking, paraphrasing, summarizing text and illustrations, and referencing, MLA or APA. Critical thinking: independent research, group discussions and presentations. Mechanics of writing: functional grammar, lexis, punctuation, and organization.

Prerequisite: ENGL101

ENGL 214 Academic & Professional Communication (3-0-3)
Production of subject-specific report: discursive or positional, researched from a variety of academic or professional sources. Proposal relating to their research report. Referencing and documentation. Professional communication: work-related skills through a variety of role-play and business activities e.g. interviewing, processing CVs/resumes, group presentations.

Prerequisite: ENGL102
FINANCE

FIN 250 Financial Management (3-0-3)
The theory and practice of financial management and the role of the Financial Manager. The basic concepts of finance, including the time value of money and conceptual framework of risk and return in financial markets. Overview of financial markets and institutions, financial statements, ratio analysis, cash flow analysis, capital budgeting techniques, security valuation, financial leverage, capital structure, the cost of capital, corporate financing policy, dividend policy, techniques of financial planning and analysis and working capital management.
Prerequisite: ACCT 210, ECON 101, ECON 102

FIN 310 Intermediate Financial Management (3-0-3)
The theory and practice of capital investments and financing decisions. The theory of risk and return and modern portfolio theory and its relevance for capital investment decision making under uncertainty are discussed. Financing decisions are examined through capital structure theory, cost of capital, and dividends policy. Valuation of securities integrates the impact of both investment and financing decisions. Advances in alternate valuation techniques particularly in real options are covered. Instruments of long-term financing; leasing; mergers and acquisitions; corporate restructuring and reorganizations, risk management, corporate governance, agency theory, and international issues.
Prerequisite: FIN 250

FIN 320 Investments (3-0-3)
Security markets, choice of investment securities, sources of investment information, and factors influencing security prices. International securities and markets. Saudi market. Selection and management of financial assets; valuation techniques for stocks and bonds; fundamental and technical analysis; theory of efficient financial markets; risk-return analysis; portfolio theory; introduction to financial futures and options.
Prerequisite: FIN 250

FIN 350 Begin Cooperative Work (0-0-0)
See contents in FIN 351.
Prerequisite: Same as FIN 351

FIN 351 Cooperative Work (0-0-6)
Each student participates in a 28 week program of industrial experience in Finance and/or related business area and submit a formal written report.
Prerequisite: ENGL 214, At least 85 credit hours

FIN 352 End Cooperative Work (0-0-0)
See contents in FIN 351.
Prerequisite: Same as FIN 351

FIN 410 International Financial Management (3-0-3)
Analysis of the key financial decisions made by multinational corporations (MNCs). The course provides an international perspective to financial problems faced by multinationals. Topics include the international financial environment; international money and capital markets; analysis of foreign exchange risk exposure and risk management; capital budgeting
and working capital management for multinationals; foreign direct investment decisions, political risk assessment, international banking and taxation.

Prerequisite: FIN 250

FIN 415 Management of Financial Institutions (3-0-3)
Theoretical and practical aspects of decision making in financial institutions including commercial banks, insurance companies, pensions funds and asset management firms. Major topics include interest rate risk management, asset/liability and capital management under current Basel regimes; credit evaluation, lending policies and practices, liquidity management; performance evaluation; investment banking; investment portfolio management; international banking.

Prerequisite: FIN 250

FIN 421 Security Analysis and Portfolio Management (3-0-3)
Application of investment theory in selection and analysis of securities and management of portfolios. Selection and management of security portfolios, applying tools and techniques developed within the modern portfolio theory framework. Management of fixed income security portfolios, duration analysis, asset pricing model; investment in options and futures and their role in hedging and speculation; portfolio performance evaluation and monitoring; examination of institutional investment policies.

Prerequisite: FIN 250

FIN 425 Financial Modeling (3-0-3)
Practical financial modeling for purposes of financial planning and decision making. Spreadsheet-based financial models. Quantitative modeling applications in financial analysis and planning; valuation techniques including derivative security valuation; capital budgeting; leasing; statistical analysis; risk analysis; optimization techniques; investment analysis and portfolio management.

Prerequisite: FIN 310, FIN 320

FIN 430 Risk Management, Conventional and Islamic Insurance (3-0-3)
Principles and practices of insurance and risk management including identification, measurement, and dealing with insurable risk in personal and business situations. Topics include theory of risk; insurance principles and terminology; implementation of risk management strategies through insurance coverage, risk retention, and risk reduction devices; financial aspects of insurance companies and markets; types of insurance coverage; basic features of selected insurance contracts.

Prerequisite: FIN 250

FIN 435 Real Estate Investment and Finance (3-0-3)
Overview of real estate markets; analysis of residential and commercial real estate development, mortgage financing and investment decisions. Fundamentals of property valuation, economic factors influencing property values, property management, and appraising principles for residential and income property, leverage, and methods of financing.

Prerequisite: FIN 250

FIN 440 Islamic Finance (3-0-3)
Introduction to the theory and practice of Islamic Financial instruments and institutions. Topics include the theory of Islamic banking, structure and management of Islamic banks, financial statements of Islamic banks. The governance in Islamic financial institutions.
Theory of Islamic contracts, Islamic bond instruments (sukuk), Islamic insurance instruments (takaful), risk and liquidity management in Islamic financial institutions. Other topics include cost of capital determination, project evaluation techniques, and accounting practices in the Islamic financial system.

Prerequisite: FIN 250, FIN 320

FIN 450 Financial Policy
(3-0-3)
Capstone case course examining practical problems in all areas of finance. The course emphasizes the application of financial theories and analytical techniques to solve business problems in both domestic and international settings. Topics covered in the course include financial analysis and planning; working capital management; capital budgeting and cash flow analysis; lease financing; long term financing and capital structure decisions; corporate restructuring, mergers & acquisitions, investment analysis, international finance. The course will be centered around business case analysis.

Prerequisite: FIN 310, FIN 320, FIN 425

FIN 460 Derivatives
(3-0-3)
Introduction to derivative securities and the markets in which they trade. Explores the regulatory framework for financial derivatives and the operations of derivatives exchanges. A detailed look at the characteristics of futures and option contracts and their associated trading strategies to achieve risk return objectives. No arbitrage principles and pricing of derivative securities.

Prerequisite: FIN 320

FIN 470 Financial Engineering
(3-0-3)
An introduction to pricing, valuation, and hedging of derivative securities which include equity and index, foreign currency, commodity, fixed-income and interest-rate derivatives. Risk measurement models, risk management and control models, and hedging techniques using derivatives.

Prerequisite: FIN 320

FIN 480 Special Topics in Finance
(3-0-3)
Focuses on advanced, contemporary, and specialized areas in Finance not covered extensively in other courses.

Prerequisite: FIN 310
GEOL 201 **Physical Geology** (2-3-3)
Introduction to the fundamentals of physical geology. Composition and structure of the Earth, mineral and rock identification, plate tectonics, mountain building, geological structures, earthquakes, volcanism, erosion and sedimentation processes. Laboratory exercises concentrate on mineral and rock identification and the interpretation of topographic and geologic maps. At least one field trip to a nearby locality is required.

GEOL 202 **Applied Geosciences for Scientists and Engineers** (2-3-3)
Introduction; geologic processes; rocks and minerals; natural resources: hydrocarbons, minerals and ground water; aspects of environmental and engineering geology; geophysics principles and practices; case histories.
Note: The Earth Sciences majors cannot take this course for credit.

GEOL 203 **Historical Geology** (2-3-3)
Introduction to principles useful in studying the Earth's history, and to examine the physical and biological evolution of the Earth from the viewpoint of global tectonics. Laboratory exercises include examination of stratigraphic rock samples, index fossils and their identification, lithostratigraphic correlation, paleoenvironments, interpretation of paleogeographic and geological maps and cross-sections. At least one field trip to a nearby locality is required.
Corequisite: GEOL 201

GEOL 214 **Paleontology and Biostratigraphy** (2-3-3)
Introduction to macrofossils and microfossils, including basic aspects of taxonomic theory, classification and principles of nomenclature; a review of the major palynomorphs, such as pollen, spores, chitinozoans and acritarchs; particular emphasis will be placed on the industrial application of these forms to aid palaeoenvironmental and biostratigraphic determinations as applied primarily to oil and gas exploration and production.
Prerequisite: GEOL 203

GEOL 216 **Mineralogy and Optics** (3-3-4)
Systematic mineralogy including detail study of major rock-forming minerals with emphasis on their physical and optical properties, chemical composition, occurrences, and associations. Principles of crystallography, crystal systems, symmetry classes and crystal forms. Crystal chemistry. Structures of minerals. Optical mineralogy. Laboratory exercises include studies of common rock forming minerals using polarizing microscope, morphological crystallography using crystal models, and determination of mineral specimens by physical properties and using hand lens, and recalculations of chemical analysis.
Prerequisite: GEOL 201

GEOL 303 **Sustaining the Earth** (3-0-3)
The course offers a broad coverage of environmental issues, including: sustainability; biodiversity and evolution; food-, soil-, and pest management; water resources and pollution; renewable energy, environmental hazards and human health; air pollution; climate change, and ozone depletion. Each student will present a term project seminar.

GEOL 305 **Structural Geology** (2-3-3)
Principles of structural geology. Concepts of true and apparent dip of strata, folds, structural contours for homoclinal and complex surfaces, geological cross-sections, block diagrams,
isopachs, faults, intrusive and extrusive igneous structures, impact structures, landslides and sinkholes. Laboratory exercises focus on the interpretation of geological maps and cross-sections and stereographic projection using Schmidt net. Computer software will be used in directional data interpretation, manipulation, and diagram and graph construction. At least one field trip to a nearby locality is required.

Prerequisite: GEOL 201

GEOL 307 Sedimentation and Stratigraphy (3-3-4)
Sediments and their properties, processes of sedimentation; depositional environments; facies and facies analyses; provenance; principles and fundamentals of stratigraphic units, Walther’s law; correlation; overview of seismic and sequence stratigraphy. Laboratory exercises on types, texture and composition of common sedimentary rocks; core description; lithofacies map; facies analyses; correlation. Computer software will be used in stratigraphic column construction and data interpretation. One field trip to nearby area is required.

Prerequisite: GEOL 201, GEOL 203

GEOL 312 Remote Sensing and GIS Applications in Geology (2-3-3)
Introduction and principles of remote sensing; aerial photography and other remote sensing techniques; principles of photogrammetry and image interpretation for geological information; introduction to the GIS (Geographic Information Systems) and its application in geosciences. Computer software will be used in data processing and interpretation.

Prerequisite: GEOL 305

GEOL 318 Regional Geology (3-0-3)
Major tectonic elements of the Arabian Peninsula. Rocks and the sedimentary cover in Arabia. Geological, structural and geomorphological evolution of Arabia with emphasis on hydrocarbon potentials, mineral wealth and underground water resources. At least one field trip is required.

Prerequisite: GEOL 201

GEOL 320 Petrology (3-3-4)
Nature, origin, differentiation and crystallization of magma; Phase relations in silicate melts. Mode of occurrence, textures, petrography and minerals of igneous rocks. Texture, structure, composition, provenance, digenesis and classification of sedimentary rocks. Distribution and origin of sedimentary rocks in relation of plate tectonics and basin developments. Processes and types of metamorphism. Facies, textures, mineralogy of metamorphic rocks. P-T paths. Relations of rocks to plate tectonics. Laboratory studies of igneous, sedimentary and metamorphic rocks in hand specimens and under microscope. At least one field trip is required.

Prerequisite: GEOL 216

GEOL 328 Geological Mapping Techniques (2-3-3)
Elementary methods of field observation and geological mapping as applied to various geological terrains. Principles of remote sensing and aerial photography. Emphasis will be on those aspects of rocks, geological structures and stratigraphic principles that are demonstrated in their natural setting in the Eastern Province of Saudi Arabia. Several laboratory exercises will be conducted in the field. Two weekend field trips to nearby localities are required. Computer software will be used in data processing and interpretation.

Prerequisite: GEOL 305

GEOL 341 Engineering Geology (3-0-3)
Modern concepts of engineering geology. Impact of geology on siting and structures design of engineering projects. Geological and mechanical fundamentals as related to engineering practices, emphasis on parameters of rock mass classification systems and on techniques relevant to site investigation programs. Case histories.

Prerequisite: GEOL 201 or Consent of Instructor for non Earth Sciences Majors

GEOL 355 Geochemistry

Prerequisite: CHEM 102, GEOL 216

GEOL 399 Summer Training
A total period of eight weeks of internship in the industry to gain practical experience in the field of geology. The student is required to submit a written report and make an oral presentation at the department based on the experience of the training program.

Prerequisite: ENGL 214, Earned Minimum 56 Credit Hours

GEOL 409 Geology Seminar
Preparation and presentation of selected geological topics. Each student is expected to submit a written report on his topic and make an oral presentation at the class.

Prerequisite: Geology Senior Standing

GEOL 415 Petroleum Geology
Definition and properties of petroleum and natural gas. The origin, migration and accumulation of hydrocarbons as related to source, reservoir and seal rocks and reservoir properties. Structural, stratigraphic and combination traps. Survey of exploration methods. Concept of petroleum province and basin analysis. Computer software will be introduced for basin analysis and data interpretation. At least one field trip is required to investigate the outcrop section of a major reservoir in Saudi Arabia.

Prerequisite: Consent of Instructor

GEOL 420 Geotectonics

Prerequisite: GEOL 305

GEOL 423 Hydrogeology
Theory and geology of groundwater occurrence and flow. Introduction to the hydrology of surface and groundwater supplies; water bearing properties of rocks; hydrodynamics of flow through porous materials; flow nets, well hydraulics, analysis and evaluation of pumping test data. Groundwater quality, occurrence of groundwater in various rock types and sediments; field techniques used in groundwater exploration and survey. Computer software will be used in data interpretation, simulation, manipulation, and graphs construction. At least one field trip to a nearby locality is required.

Prerequisite: GEOL 201 or Consent of Instructor for non Earth Sciences Majors
GEOL 430 Field Geology (0-18-6)
Six weeks of systematic fieldwork for training in geological techniques. After a brief introduction and rehearsal of basic field procedures and mapping techniques including applications of remote sensing and aerial photography, a specific area will be mapped in detail. The course requires each student to prepare a complete field notebook, geological map, stratigraphic successions, cross-sections, and a comprehensive geological report. The participants of the course are also required to make an oral presentation based on the field report.
Prerequisite: GEOL 305, GEOL 307, GEOL 320

GEOL 431 Geomorphology (3-0-3)
Introduction to internal and external Earth processes, and resulting landforms on the Earth’s surface. Classification, description, and evolution of landforms. The fluvial and eolian domain. Analysis of geomorphic features using maps and aerial photographs. At least one field trip to a nearby locality is required.
Prerequisite: GEOL 201

GEOL 434 Marine Geology (3-0-3)
Introduction to the continental margin geological processes and features: continental shelf, barrier island, reef, atoll, slope, rise, and abyssal plains, submarine canyons and plate-tectonic activity. Worldwide sea level changes through time, oxygen isotope stratigraphy, and paleoceanic circulation. Marine sedimentary rocks of the Arabian Peninsula. At least one field trip to a nearby locality is required.
Prerequisite: GEOL 201

GEOL 435 Petroleum Geochemistry (3-0-3)
Overview of the origin of petroleum, its chemical composition, and the methods used in petroleum geochemistry; carbon cycle; composition of biomass; kerogen and coal formation; maturity assessments; biomarkers and molecular geochemistry; geochemical correlation techniques; geochemical prospecting.
Prerequisite: GEOL 203, GEOL 415

GEOL 436 Oceanography (3-0-3)
Fundamental oceanographic principles. Distribution of terrigenous and biogenic ocean sediments. Historical overview of seawater formation. Tidal influence, geostrophic force, storms, surface and deep ocean water circulation, photic and aphotic zones, total dissolved solids and formation of manganese nodules. Concept of CCD, lysocline, thermocline, oxygen-minimum layer, pycnocline, nepheloid concentration layer, salinity and temperature gradient, Pleistocene glaciations and worldwide carbon dioxide budget. At least one field trip to a nearby locality is required.
Prerequisite: GEOL 201

GEOL 440 Sedimentology (2-3-3)
Elements of sedimentary basin formation, style of sedimentation, provenance, associated facies, and subsequent physicochemical changes through time. Plate-tectonic, climatic, allo- and autocyclic constraints on sedimentary rocks. Emphasis on convergent and rifted margin sedimentary record. Usage of several macroscopical and microanalytical tools for detailed sedimentary basin analysis. Computer software will be introduced for basin analysis and data interpretation. At least one field trip is required.
Prerequisite: GEOL 307
GEOL 441 Techniques in Sediment Analysis (2-3-3)
Macro- and micro- analysis of geological materials. Fundamental principles and sample preparation techniques for detailed geochemical studies. Determination of bulk and trace element composition, fluid inclusion study, homogenization, pressure-temperature, and $Eh-pH$ of the mineralizing solution. Laboratory exercises include: grain-size analysis, heavy mineral and magnetic separation, petrographic slide preparation, staining techniques, vacuum impregnation, peels and slices, scanning electron microscope, X-ray diffraction, X-ray florescence, electron probe microanalyzer (EPMA), ICP, and gas chromatography. Individual research project report is required. At least one field trip to a nearby locality is required.
Prerequisite: GEOL 216

GEOL 446 Environmental Geology (3-0-3)
Prerequisite: GEOL 201

GEOL 454 Computational Methods in Geology (2-3-3)
Introduction to the modern concepts of quantifying geologic variables. Integration, analysis, and interpretation of geologic data. Application of statistical, spatial, and numerical techniques to characterize oil reservoirs, groundwater aquifers, mineral resources and environmentally contaminated sites. Computer packages are introduced for modeling purposes.
Prerequisite: Consent of Instructor for non Earth Sciences Major

GEOL 456 Economic Geology (2-3-3)
Introduction, historical development of economic geology. Origin, classification, occurrences and association of mineral deposits. Metallogenic provinces and epochs. Study of important economic mineral deposits. Laboratory exercise includes ore microscopy and hand specimens identification of common ore minerals and gemstones. Computer software will be introduced for data processing and interpretation. At least one field trip is required.
Prerequisite: GEOL 216

GEOL 460 Mining Geology (3-0-3)
Basic concepts and historical developments. Geological principles of ore exploration and appraisal. Methods of ore body sampling, estimation and classification of reserves. Methods of mining and mineral processing. Computer software related to data processing, ore reserve estimation, and interpretation will be used.
Prerequisite: GEOL 216

GEOL 461 Mineral Economics (3-0-3)
Basic concepts. Significance of the mineral industries in the economy. Examination and valuation of mineral properties, mine organization and administration, and mine management.
Prerequisite: GEOL 216

GEOL 464 Carbonate Geology (2-3-3)
Carbonate rocks, their characteristics, classification, and distribution. Environments of deposition, associations, and economic importance. Relationship to petroleum deposits with special emphasis on shoals and reefs. Study of outcrops, hand specimens and thin sections. At least one field trip is required.

Prerequisite: GEOL 307

GEOL 480 Special Topics

Contents to be arranged.

Prerequisite: To be set by the Earth Sciences Department.
GEOPHYSICS

GEOP 202 Introduction to Geophysics (3-0-3)
Introduction to applied and solid-earth geophysics; the gravitational, seismic, magnetic, thermal, and radioactive properties of rocks and earth materials; methods of measurement and their applications to the exploration of the Earth's interior. Physical properties of the earth's interior. Some field trips are required.
Prerequisite: MATH 102, PHYS 102

GEOP 204 Introduction to Seismology (3-0-3)
Body and surface forces, stress, strain, elastic moduli, equation of motion, yield strength. Types of elastic waves, their propagation, reflection/refraction, travel-time curves and their application to the study of the Earth's interior. Causes and effects of earthquakes; methods of locating and determining magnitudes of earthquakes; interpretation of seismograms; occurrence frequency of earthquakes and risk analysis, earthquake prediction, earthquakes related to human activity, seismometry.
Prerequisite: GEOP 202

GEOP 205 Computational Geophysics (3-0-3)
Topics covered include: Fourier transform; partial differential equations of geophysics; linear operators; convolution; correlation techniques; digital filters; the FFT algorithm; analytic continuation; probability distributions; trend surface analysis; with emphasis on computer applications of these tools to geophysical data; MATLAB would be used to illustrate the techniques numerically.
Prerequisite: MATH 201, ICS 101 or ICS 102 or ICS 103, GEOP 202

GEOP 315 Seismic Exploration I (2-3-3)
Principles of the seismic method; exploration objectives and requirements of seismic data acquisition; the seismic pulse - its generation and transmission; partition of seismic energy at an interface; seismic energy reflection, refraction, attenuation, and travel time - distance functions; reflection time corrections; field testing and procedures with emphasis on multiple coverage and design of source and receiver arrays for signal enhancement; well velocity survey; the synthetic seismogram and the convolutional model. The laboratory work includes seismic field demonstrations, computational exercises using software packages. A field trip to a seismic crew is required.
Prerequisite: GEOP 202

GEOP 320 Seismic Data Processing (2-3-3)
Objectives of processing; basic data processing sequence; the digital tape format; demultiplex, trace editing and gain removal; design of digital filters; deconvolution; residual static correction; seismic velocity analysis; migration including Kirchoff, finite difference, and frequency domain methods; computer lab sessions on the use of common seismic software packages.
Prerequisite: GEOP 205, GEOP 315

GEOP 399 Summer Training (0-0-2)
A continuous period of eight weeks of summer working in the industry to gain practical experience in the fields of geophysics. The student is required to submit a written report and give an oral presentation in a seminar at the department about his experience and the knowledge he gained during his summer work.
Prerequisite: ENGL 214, Junior Standing, Approval of the Department
GEOP 402 Senior Project (1-6-3)
Topics will depend on student's and instructor's interest. They may vary from acquisition and interpretation of geophysical data from the field or the laboratory to computer models and simulation of theoretical problems of interest in geophysics, or a mixture of both. Weekly consultations with the instructor as well as a written report are required.
Prerequisite: Senior Standing

GEOP 404 Gravity and Magnetic Exploration (3-0-3)
The course is devoted to the gravity and magnetic exploration methods, starting with a survey of the theory of potential, the coverage will include field instruments and procedures, methods for the acquisition, reduction and processing of data. Special emphasis is placed on data analysis and computer modeling.
Prerequisite: GEOP 205

GEOP 405 Seminar (1-0-1)
Weekly discussion and presentation of research topics of geophysical interest. The theme of the seminar varies from year to year depending on the interest of the coordinator of the seminar. Participants are expected to make presentations and lead discussions on the subject of interest.
Prerequisite: Senior Standing

GEOP 415 Seismic Exploration II (3-0-3)
Topics covered include: seismic resolution; types of events on seismic sections; characteristics of events; vertical seismic profiling; geologic aspects of velocity; seismic response of various stratigraphic and structural features; direct hydrocarbon indicators; 2-D and 3-D seismic exploration technique; introduction to seismic stratigraphy.
Prerequisite: GEOP 315

GEOP 430 Geophysical Well Logging (2-3-3)
General aspects of well logging; drilling mud and casing; compositional properties of rocks, porosity, permeability, and fluids content. Logging techniques - resistivity, self-potential, gamma ray, neutron, density, sonic, calipers, dipmeters, etc. Determination of formation factor, water saturation, shaliness, estimation of permeability. Well log patterns of known rock units and the geological interpretation of well logs. Differentiation of oil and gas zones. Correlation between logs and tying wells to seismic sections.
Note: Not to be taken for credit with PETE 303.
Prerequisite: GEOP 202

GEOP 450 Electrical Exploration (3-0-3)
Electrical properties of minerals and rocks. Principles of resistivity, self-potential, induced polarization, and electromagnetic methods. Emphasis on physical bases, instrumentation, field procedures, and interpretation using electrical software packages.
Prerequisite: GEOP 202

GEOP 455 Geodynamics (3-0-3)
Basic physical principles applied to the study of the earth material properties and earth dynamical processes; discussions of a variety of geological phenomena such as heat and fluid flow, rock rheology and deformation, lithospheric flexure and isostatic equilibrium, mechanics of plate tectonics.
Prerequisite: GEOP 202, PHYS 301
GEOP 465 Paleomagnetism (3-0-3)
Methods and techniques of paleomagnetism and their application to a variety of geological problems in regional and global tectonics, geochronology, paleogeography, rock fabric analysis, etc. Students conduct a small-scale study as a term project.
Prerequisite: GEOP 202

GEOP 470 Geophysical Engineering (3-0-3)
Practical and theoretical aspects of seismic refraction and electrical resistivity methods as applied for siting and control of engineering projects, such as dams, tunnels, highway cuts and water supply. Correlation between parameters of field data and rock mechanics, such as joint frequency, rock quality designation, strength and solution cavities. Interpretation techniques and fieldwork constitute the main part of the course.
Prerequisite: GEOP 202

GEOP 472 Meteorology and Climatology (3-0-3)
An introductory course on the atmosphere, weather, and climate. Discussion topics cover: an overview of the Earth's atmosphere, energy in the atmosphere, general atmospheric circulation, atmospheric physics and dynamics, clouds and precipitation, storms, air masses and fronts, weather analysis and forecasting, remote sensing in meteorology, general climatology, climatic classification, climatic change, climate dominated by different air masses, climate and water resources, applied climatology, and weather modification and climate.
Prerequisite: Junior Standing

GEOP 475 Environmental Geophysics (3-0-3)
Application of geophysical methods to environmental problems such as impact-assessment, clean-up, city planning, and siting of civic, industrial, and military critical facilities. Techniques include seismic, electrical and electromagnetic sounding, ground-penetrating radar, magnetic, gravity, and borehole geophysics.
Prerequisite: GEOP 202

GEOP 478 Data Inversion in Geophysics (3-0-3)
Basic concepts and techniques of inverse theory and application to geophysical problems; focus on linear inverse problems in gravity, magnetic, seismic, and electrical data modeling and interpretation.
Prerequisite: GEOP 202, MATH 202

GEOP 480 Special Topics (3-0-3)
Contents to be arranged.
Prerequisite: Senior standing, Permission of the Department
GENERAL STUDIES

GS 220 Information Searching Skills (2-0-2)
Acquaintance to printed and electronic information resources, methods of searching for information, searching in the indexes and the abridgments, seeking by subject and word, using electronic information bases and the Internet, practical exercises through searching for information.
Prerequisite: ENGL 102

GS 318 World Civilizations (3-0-3)
The development of world civilizations from 1500 AD until the present, examining the peoples, forces and concepts that have shaped the rise of major world civilizations. This includes: the history of nation-states and related inter-nation and inter regional rivalries, colonialism and geographical context, the discovery and exploration of the new world, the role of societal development and intellectual thought, analysis of diverse socio-cultural perspectives and religions in determining the interaction of world cultures and their influence on the development of world civilization.
Prerequisite: ENGL 102

GS 321 Principles of Human Behavior (3–0–3)
Prerequisite: ENGL 102

GS 332 Principles of Sociology (3-0-3)
Concepts, relevance, development, and research methods of sociology. Major sociological paradigms and theories. Socialization and social interaction. Social groups and institutions: analyses of function and impact. Analyses of everyday social life through sociological concepts, such as social stratification, social control (conformity, deviance and authority), social and cultural changes, and social development.
Prerequisite: ENGL 102

GS 336 Work & Society (3-0-3)
Development of Industrial Society. Management and work forces relations. Theories of human relations and interactions. Various economic activities. Theories of motivation, bureaucracy, leadership, emphasizing basic needs and human relations.
Prerequisite: ENGL 102

GS 342 International Relations (3–0–3)
The nature of the International community and how states interact. Theories of international relations and the factors that affect the international community. Aspects related to international relations such as globalization, United Nations and other Organizations. Some regional and international current issues.
Prerequisite: ENGL 102
GS 355 Cultural Anthropology (3–0–3)
The discipline of cultural anthropology including key theoretical and methodological approaches to the study of culture. The nature of ethnographic analysis: how cultural anthropologists understand, describe, explain, and highlight the particularities, similarities, and differences of the human experience. Examine the comparative study of contemporary human societies, cultures, and diversity, including local and regional cultures. How people adapt to, make sense of, and transform their worlds. Examine and understand the cultural dimensions of human life expressed through value of systems, language, and social practices and their meanings.

GS 420 Personality Psychology (3–0–3)
Personality definitions, assumptions, different characteristics (traits, dispositions, and styles), and effects on behavior. Measurement of personality. Theories of personality. Personality and related issues; namely: its relation to some psychological concepts and constructs. Culture and gender. Individual well-being.
Prerequisite: ENGL 102

GS 426 Social Psychology (3-0-3)
The study of the social nature of humans: social psychology notions and development. Exploring and implementing the scientific methods of social psychology. The influence of heredity and culture on the individual. The development of the components of the self. An introduction to social cognition, including person perception, stereotyping, and prejudice. The foundations of social influence, including compliance, persuasion and obedience. Understanding the processes that drive prosocial and antisocial behavior. A comparative approach to the nature of belonging and social relationships. The effects of groups on the individual and vice-versa: group and the self, power, status, and leadership.
Prerequisite: ENGL 102

GS 434 Mass Media & Society (3–0–3)
An overview and analysis of sociological perspectives regarding the role of mass media in society. Critical analysis of issues in mass media. Mapping mass media structure. The basic functions of communication through analyses of information, opinion, entertainment, advertising and marketing. Ways of directing public opinion. An overview of the impact of mass media in promoting economic products and industries. Effects on society and cultural change. Legal and ethical issues in mass media. History and development of mass media in the Middle East.
Prerequisite: ENGL 102

GS 447 Globalization (3–0–3)
Prerequisite: ENGL 102
HUMAN RESOURCES MANAGEMENT

HRM 301 Human Resources Management (3-0-3)
Activities and processes of the human resources function that include recruitment, selection, placement, training, career development, performance appraisal and motivation, compensation, and separation. Emphases are put on the role of HRM in organizational strategies and the human resources as a source of competitive advantage. Also included, coverage of the environmental, contextual and global aspects and dimensions of the human resource management function and activities and the case of the Saudi Business environment.
Prerequisite: MGT 301

HRM 390 Performance Appraisal & Management (3-0-3)
How employee performance is organized, appraised, and managed to achieve organizational and individual performance goals. Topics include job design standards, employee appraisal systems and techniques, employee behavior and attitudes, employee job-fit, assessment of related HRM functions, performance measurements and their validity, and ethical dimensions of performance appraisal and management. Instructional techniques will include teamwork and oral and written presentations.
Prerequisite: HRM 301

HRM 401 Staffing & Selection (3-0-3)
In-depth analysis of the methods used in staffing and selection processes. Methods used to evaluate individuals (e.g., ability tests) as well as methods used to evaluate selection and promotion tools (e.g. reliability, validity, and utility). The processes of designing, administering, revising, and evaluating selection programs that comply with government regulation as well as add value to the organization. Legal guidelines, reliability, validity, utility analysis, evaluation of selection techniques.
Prerequisite: HRM 301

HRM 402 Training & Development (3-0-3)
Information and insights into the training and development functions in organizations. The training and development function will be viewed from systems approach, such that it will examine the entire cycle of training and development – from the assessment of training needs to the evaluation of a training program within the context of today’s organizations and the trends in the globalized era.
Prerequisite: HRM 301

HRM 403 Compensation and Benefits Management (3-0-3)
Focuses on the techniques, processes, and decisions of the design and management of employee compensation. It covers the strategic choices involved in the design and management of compensation. Topics include job analysis, job descriptions and specifications, job evaluation techniques, pay levels determination, labor markets, pay surveys, performance appraisal, incentives, benefits, compensation laws, compensation of special groups, nontraditional forms of compensation such as knowledge and skill-based pay systems, and the role of government and society. Also coverage will include the global aspects of compensation and compensation in the Saudi business environment.
Prerequisite: HRM 301

HRM 411 International Human Resource Management (3-0-3)
International dimensions of the core aspects of human resource management, such as linkages with international business strategy and structure, recruitment, compensation and reward management, training and development, performance management, and industrial relations. The connection between corporate strategies and the effective management of human resources, which at times, may require differing policies across countries. The course is based on the notion that multinational enterprises (MNEs) and transnational firms require appropriate structures, policies, and strategies for managing their employees at every level of the enterprise.

Prerequisite: HRM 301
ISLAMIC AND ARABIC STUDIES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAS 101</td>
<td>Practical Grammar</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>Selection of aspects of Arabic grammar essential for written and spoken communication in everyday life with emphasis on correct grammar usage.</td>
<td></td>
</tr>
<tr>
<td>IAS 111</td>
<td>Belief and its Effects</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>The root of the true faith. Special characteristics of Islamic faith. The Islamic view of the universe, mankind and life. Means of enrichment of life and beliefs.</td>
<td></td>
</tr>
<tr>
<td>IAS 131</td>
<td>Objective Writing</td>
<td>1–3–2</td>
</tr>
<tr>
<td></td>
<td>Alphabetization, correct pronunciation and handwriting. Step by step explanation of the principles of the Arabic language using everyday illustrations (excluding grammar and morphology). (Open for non-Arabic speakers only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Approval of the Department</td>
<td></td>
</tr>
<tr>
<td>IAS 201</td>
<td>Objective Writing</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>Characteristics and types of formal writing: reports; scientific research; summaries; forms; resumes; evaluations and minutes of meetings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: IAS 101</td>
<td></td>
</tr>
<tr>
<td>IAS 212</td>
<td>Professional Ethics</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: IAS 111</td>
<td></td>
</tr>
<tr>
<td>IAS 231</td>
<td>Grammar and Composition</td>
<td>1–3–2</td>
</tr>
<tr>
<td></td>
<td>A simplified systematic study of selected important topics of Arabic grammar. (Open for non-Arabic speakers only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: IAS 131</td>
<td></td>
</tr>
<tr>
<td>IAS 301</td>
<td>Language Communication Skills</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>Promoting interactive skills and techniques for social, academic and professional life: dialogue; presentations; persuasion and developing a positive approach.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: IAS 201</td>
<td></td>
</tr>
<tr>
<td>IAS 322</td>
<td>Human Rights in Islam</td>
<td>2–0–2</td>
</tr>
<tr>
<td></td>
<td>The dignity of mankind and basic human rights. The Islamic viewpoint of human rights, its distinguishing characteristics, and debates related to this issue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: IAS 212</td>
<td></td>
</tr>
</tbody>
</table>
IAS 331 Literature and Text (1–3–2)
Reading, understanding and discussion of the meaning of some Quranic Ayas and hadiths. Selected Islamic stories and Arabic verses.
(Open for non-Arabic speakers only)
Prerequisites: IAS 231

IAS 411 Contemporary Islamic World (2–0–2)
An introduction to the Islamic world. Internal challenges relating to the lagging behind in educational and scientific pursuits, differences in opinions, and differing contemporary schools of thought. External forces opposed to Islam. Current Islamic issues and means for solving them. The role played by Islamic organizations.
Prerequisites: Junior Standing

IAS 416 Al-Sirah Al-Nabawiyyah (2–0–2)
The biography and lifestyle of the Holy Prophet Mohammad (Peace Be Upon Him) portraying and exemplary model for students in their practical life.
Prerequisites: Junior Standing

IAS 418 Contemporary Financial Transactions in Islam (2–0–2)
Contemporary business transactions; corporative structure; Islamic banking; contracts; borrowing and lending; investments (Stocks, Shares, and Bonds).
Prerequisites: Junior Standing

IAS 419 Inimitability of Al-Quran (2–0–2)
Different aspects of inimitability of Al-Quran; rhetorical, metaphysical, legislative; and scientific inimitabilities.
Prerequisites: Junior Standing
INFORMATION AND COMPUTER SCIENCE

ICS 101 Computer Programming (2-3-3)
Overview of computer hardware and software; Programming in FORTRAN with emphasis on modular and structured programming technique; Problem solving and algorithm development; simple engineering and scientific problems.
Note: Not to be taken by ICS/SWE students
Corequisite: MATH 101

ICS 102 Introduction to Computing I (2-3-3)
Corequisite: MATH 101 or MATH 132

ICS 103 Computer Programming in C (2-3-3)
Overview of computer hardware and software; Programming in C with emphasis on modular and structured programming technique; Problem solving and algorithm development; Simple engineering and scientific problems.
Note: Not to be taken by ICS/SWE students
Corequisite: MATH 101 or MATH 132

ICS 201 Introduction to Computing II (3-3-4)
Advanced object-oriented programming; inheritance; polymorphism; abstract classes and interfaces, container and collection classes, packages, object-oriented design, software modeling, event-driven programming, recursion, use of stacks, queues and lists from API, searching and sorting.
Prerequisite: ICS 102

ICS 202 Data Structures (3-3-4)
Review of object-oriented concepts; Introduction to design patterns; Basic algorithms analysis; Fundamental data structures - implementation strategies for stacks, queues and linked lists; Recursion; Implementation strategies for tree and graph algorithms; Hash tables; Applications of data structures (e.g. data compression and memory management).
Prerequisite: ICS 201

ICS 233 Computer Architecture and Assembly Language (3-3-4)
Machine organization; assembly language: addressing, stacks, argument passing, arithmetic operations, decisions, modularization; Input/Output Operations and Interrupts; Memory Hierarchy and Cache memory; Pipeline Design Techniques; Super-scalar architecture; Parallel Architectures.
Prerequisite: COE 202, ICS 201

ICS 253 Discrete Structures I (3-0-3)
Propositional Logic, Predicate Logic, Sets, Functions, Sequences and Summation, Proof Techniques, Mathematical induction, Inclusion-exclusion and Pigeonhole principles, Permutations and Combinations (with and without repetitions), The Binomial Theorem, Recurrence Relations; Graphs terminology and applications, Connectivity, Isomorphism, Euler and Hamilton Paths and Circuits, Planarity and Coloring; Trees terminology and applications.
Prerequisite: ICS 102

ICS 254 Discrete Structures II (3-0-3)
Number Theory: Modular Arithmetic, Integer Representation, Fermat’s Little Theorem, Chinese Remainder Theorem, RSA.; Proof Techniques: Methods of Proofs, Applications from Number Theory, Recursive Definitions; Algorithm Correctness; Relations: Closures and Equivalence Relations, Partial Orderings and Lattices, Hasse Diagrams; Recurrence Relations and Generating Functions; Automata Theory: Finite State Machines, Regular Expressions, DFA, NDFA and their equivalence, Grammars and Chomsky Hierarchy, Introduction to Turing Machines.; Abstract Algebra: Groups, Homomorphisms and Lagrange's Theorem, Applications.
Prerequisite: ICS 253

ICS 309 Computing and Society (2-0-2)
Impact of Computing on Society; Ethical Foundations; Governance and Regulation; Freedom of Speech; Intellectual Property; Privacy; Security; Professional Responsibility; Leadership challenge.
Prerequisite: Junior Standing

ICS 324 Database Systems (3-3-4)
Basic database concepts, conceptual data modeling, relational data model, relational theory and languages, database design, SQL, introduction to query processing and optimization, and introduction to concurrency and recovery.
Prerequisite: ICS 202

ICS 343 Fundamentals of Computer Networks (3-3-4)
Introduction to computer networks and layered architectures: connectivity, topology, circuit and packet switching, TCP/IP and ISO models; Application layer: C/S model, DNS, SMTP, FTP, WWW, socket programming and network security; Transport layer: TCP and UDP, congestion control; Network layer: internetworking, addressing and routing algorithms and protocols; Data link layer: framing, flow and error control protocols, PPP, MAC and LANs; Physical layer: principles of data communications, circuit switching, coding, multiplexing and transmission media.
Note: Not to be taken for credit with COE 344
Prerequisite: ICS 201

ICS 350 Begin Cooperative Work (0-0-0)
See contents in ICS 351.
Prerequisite: Same as in ICS 351

ICS 351 Cooperative Work (0-0-9)
A continuous period of 28 weeks spent as a normal employee in industry, business, or government agencies with the purpose of familiarizing students with the real world of work and enabling them to integrate their classroom learning to a real work environment. During this period, a student is exposed to a real-life work in the field. Each student is required to participate with at least one project. Students are required to submit progress reports during the work period. Students are also required to give a presentation and submit a final report on their experience and the knowledge they gained during their cooperative.
Prerequisite: ICS 324, SWE 311, ENGL 214, Major GPA ≥ 2, Completion of at least 85 hours, Department Approval
ICS 352 End Cooperative Work (0-0-0)
See contents in ICS 351.
Prerequisite: Same as in ICS 351

ICS 353 Design and Analysis of Algorithms (3-0-3)
Algorithms and Problem Solving; Basic Algorithmic Analysis; Advanced algorithmic analysis; Advanced Data Structures; Algorithmic strategies & Analysis of fundamental computing algorithms; Basic computability; The complexity classes P and NP.
Prerequisite: ICS 202, ICS 253

ICS 355 Theory of Computing (3-0-3)
Prerequisite: ICS 253

ICS 381 Principles of Artificial Intelligence (3-0-3)
Introduction to Artificial Intelligence (AI) history and applications; First order logic; State space representation; Blind and heuristic search; Constraint satisfaction and planning; Knowledge representation; Reasoning in uncertain situations; Machine learning; Prolog programming; Natural language processing, Expert systems and real AI applications.
Prerequisite: ICS 253

ICS 399 Summer Training (0-0-0)
A summer period of 8 weeks spent as a trainee in industry, business, or government agencies for the purpose of familiarizing the student with the real job world and enabling him to apply and relate his academic knowledge to a real work environment. The student is required to participate in computer science related activities and use his time to get acquainted with the computer science related functions and resources used by his employing organization. Besides progress reports, the student is required to submit a final report and do a presentation on his experience and the knowledge he gained during his summer training program. The student receives a zero-credit Pass/Fail grade.
Prerequisite: ICS 324, SWE 311, ENGL 214, Junior Standing, Department Approval

ICS 410 Programming Languages (3-0-3)
Prerequisite: ICS 202

ICS 411 Senior Project (1-6-3)
Project-oriented course in which students work in teams on an applied real-world problem of their interest, go through its software development lifecycle in order to develop a prototype software solution for the problem at hand. The senior project offers the opportunity to integrate
the knowledge acquired in preceding courses, as well as promote and instill communication skills, writing skills, and lifelong self-learning.

Prerequisite: ICS 324, SWE 311, ENGL 214, Senior Standing

ICS 412 Compiler Construction Techniques (3-0-3)
Compiler techniques and methodology; Organization of compilers. Lexical and syntax analysis; Parsing techniques; Object code generation and optimization, detection and recovery from errors; Contrast between compilers and interpreters.

Prerequisite: ICS 202, ICS 254

ICS 415 Computer Graphics (3-0-3)
Applications of Computer Graphics; Graphics systems and devices; Output Primitives and their Attributes; Geometric Transformations; Window to Viewport Mapping and Clipping; Curves and Surfaces; Three-Dimensional viewing; Hidden surface removal; illumination and color models, Animation.

Prerequisite: ICS 202

ICS 424 Advanced Database Systems (3-0-3)

Prerequisite: ICS 324

ICS 426 Data Warehousing and Data Mining (3-0-3)
Review of relational databases and Conjunctive queries, Data Warehousing Concepts and OLAP, Data Warehouse Design and Development, Information and data Integration, OLAP Technology for Data Mining. Data Mining: Primitive, Languages and Application Developments.

Prerequisite: ICS 324

ICS 431 Operating Systems (3-3-4)
This course introduces the fundamentals of operating systems design and implementation. Topics include history and evolution of operating systems; Types of operating systems; Operating system structures; Process management: processes, threads, CPU scheduling, process synchronization; Memory management and virtual memory; File systems; I/O systems; Security and protection; Distributed systems; Case studies.

Prerequisite: ICS 233

ICS 436 Systems and Networking Administration (2-3-3)

Prerequisite: ICS 343 or COE 344
ICS 437 Distributed Systems (3-0-3)
Introduction to Distributed Systems; Distributed Systems Architecture; Computer Networks for distributed systems; Distributed Objects and Remote Invocation; Distributed Naming; Distributed File Systems; Security; Synchronization; Distributed Coordination and Agreement; Distributed Transactions; Distributed Replication; Distributed Multimedia Systems, Distributed Shared Memory; Case Studies such as CORBA, MACH, DCOM, and GLOBE.
Prerequisite: ICS 343 or COE 344

ICS 443 Network Design and Management (3-0-3)
Overview of network design and management; Design methodologies; Network management strategies; Network configuration management; Network management protocols: SNMP, and RMON; Network management tools and systems; Network management applications; Desktop and web-based network management; Network troubleshooting.
Prerequisite: ICS 343

ICS 444 Computer and Network Security (3-0-3)
Introduction to computer and network security; Security services: confidentiality, integrity, availability, accountability; Hacker techniques and attack types; Public and private key encryption; Authentication; Digital signature; User identification and access control; Computer viruses, Trojans and worms; Risk management and analysis; Information security process; Internet security: security protocols such as IPSec, SSL, TLS, email and web security; Security technologies and systems: Firewalls, VPN and IDS.
Note: Not be taken for credit with SWE 421
Prerequisite: ICS 343 or COE 344

ICS 446 Cluster Computing (3-0-3)
Introduction to high performance computing: types of parallel computers, system architectures, performance measures; Message passing programming; Complexity analysis of parallel algorithms; Embarrassingly parallel computations; Partitioning and divide-and-conquer strategies; Pipelined computations; Synchronous computations; Load balancing and termination detection; Programming with shared memory; Parallel sorting algorithms; Numerical algorithms; Parallel image processing; Searching and optimization; Project/Programming-assignments.
Prerequisite: ICS 202, Junior Standing

ICS 447 Computer Network Technologies (3-0-3)
Various advanced topics on LANs and internetworking technologies will be addressed. Topics include: Performance measures and evaluation techniques; Advanced network architectures and differentiated services in IP networks; High-speed access technologies; Switched, Fast and Gigabit Ethernet; VLANs; Wireless LANs; ISDN and ATM; Frame Relay; Mobile computing and mobile IP; VPN and Enterprise networks; Emerging network trends and technologies.
Prerequisite: ICS 343 or COE 344

ICS 454 Principles of Cryptography (3-0-3)
Classical cryptography; Secret Key Encryption; Perfect Secrecy. Cryptanalysis; Block and Stream cipher; Data Encryption Standard (DES) and Advanced Encryption Standard (AES); Public Key Encryption; Diffie-Hellman Key Exchange; RSA, ElGamal and Rabin’s Cryptosystems; Authentication and Digital Signatures; One-time signatures; Randomized Encryption; Rabin and ElGamal signature schemes; Digital Signature Standard (DSS)’
Cryptographically Secure Hashing; Message Authentication Codes; Network Security; Secure Socket Layer (SSL); IPsec.

Prerequisite: ICS 254, ICS 353

ICS 481 Artificial Neural Networks (3-0-3)
Introduction to neural computing: Real vs. artificial neurons; Threshold logic; Training a linear threshold unit, the perceptron rule; Multilayer feed-forward networks and the back propagation algorithm; The Hopfield net; Self-organizing maps; Radial basis functions; Adaptive resonance theory; Applications of Neural Networks (ANN).

Prerequisite: Senior Standing

ICS 482 Natural Language Processing (3-0-3)
This course examines a range of issues concerning computer systems that can process human languages. Among the issues to be discussed are morphological and syntactic processing, semantic interpretation, discourse processing and knowledge representation.

Prerequisite: Senior Standing

ICS 483 Computer Vision (3-0-3)
Image acquisition, The digital image and its properties, Image preprocessing, Segmentation (thresholding, edge- and region-based segmentation), Shape representation and object recognition, Motion analysis, Case studies (object recognition / object tracking).

Note: Not to be taken for credit with COE 487 or EE 410

Prerequisite: Senior Standing

ICS 484 Arabic Computing (3-0-3)
This course examines a range of issues concerning computer concepts related to Arabic. Among the issues to be discussed are: Arabic Language Characteristics, Arabic Character Sets, Standardization, Unicode, Arabization systems, Arabic software tools, Arabic programming languages and Introduction to Arabic Computations.

Prerequisite: Senior Standing

ICS 485 Machine Learning (3-0-3)
Introduction to machine learning; Concept learning; Supervised learning - decision tree learning; Unsupervised learning - clustering. Artificial neural networks. Evaluating hypotheses; Bayesian learning; Computational learning theory; Instance based learning. Genetic algorithms; Learning sets of rules - Inductive Logic Programming; Reinforcement learning; Analytical learning.

Prerequisite: Senior Standing

ICS 486 Multi-Agent Systems (3-0-3)
Agents, agent definitions and classification; Multi-agent systems (MAS) and their characteristics; Models of agency, architectures and languages, logics for MAS, deductive and practical reasoning agent, reactive and hybrid agents; Distributed problem solving and planning; Coordination mechanisms and strategies; Learning in MAS; Interaction, negotiation and coalition formation; Applications of agent technology (agents in electronic commerce and information retrieval).

Prerequisite: ICS 381

ICS 488 Soft Computing (3-0-3)
Introduction to Soft Computing, Fuzzy Sets Theory, Fuzzy Logic, Artificial Neural Networks, Probabilistic Reasoning, Genetic Algorithms, Neuro-Fuzzy Technology, Combination of
Genetic Algorithms with Neural Networks, Combination of Genetic Algorithms and Fuzzy Logic, Applications of Soft Computing (three to four real life applications).

Prerequisite: STAT 319, Senior Standing

ICS 490 **Special Topics I**
State-of-the-art topics in Computer Science and Information Systems.
Prerequisite: Senior Standing.

ICS 491 **Special Topics II**
State-of-the-art topics in Computer Science and Information Systems.
Prerequisite: Senior Standing
INDUSTRIAL AND SYSTEMS ENGINEERING

ISE 100 Introduction to Technology (2-3-3)
Overall survey of technologies in different areas such as computers, IT, communications, oil and gas, construction and manufacturing. Emphasis of the course on systems approach on addressing problems.

ISE 201 Introduction to Industrial and Systems Engineering (1-0-1)
An introduction to and overview of the profession, including career planning, professionalism, ethics and teamwork Nature of the Industrial Engineer job, Selected areas of IE such as quality, optimization, productivity, process improvement. Industry site visits, industrial speakers, Case studies from IE applications.
Prerequisite: MATH 102

ISE 205 Engineering Probability and Statistics (3-0-3)
Prerequisite: MATH 201

ISE 303 Operations Research I (3-0-3)
Prerequisite: ISE 201, ISE 205

ISE 304 Principles of Industrial Costing (3-0-3)
Introduction to basic costing concepts and behavior, with emphasis on manufacturing optimization through labor and materials cost analysis, operation and overhead cost calculations, product cost estimating, and finally setting product selling price. Study of the principles of costing systems and techniques of analysis and cost control. Emphasis on interpretation and use of costing principles for decision making.
Prerequisite: ISE 205

ISE 305 Optimization Methods (2-3-3)
Prerequisite: ISE 303

ISE 307 Engineering Economic Analysis (3-0-3)
Introduction to concepts of economic decision-making from a cash flow viewpoint. It includes present worth analysis, cash flow equivalence, rates of return, replacement analysis, benefit-cost analysis, depreciation and taxes, and projects break-even point, selection, and sensitivity analysis.
Prerequisite: Third Year
ISE 320 Quality Control and Industrial Statistics (3-0-3)
Prerequisite: ISE 205

ISE 322 Manufacturing Technology (3-3-4)
Manufacturing methods of metals and plastics including metal casting, forming, machining, welding, and plastic processing. Laboratory experiments and demonstrations in material behavior, forming, casting, welding and machining operations, metrology and dimensional control.
Prerequisite: ME 216 and ME 217, CE 101

ISE 323 Work and Process Improvements (2-3-3)
Prerequisite: ISE 205

ISE 325 Engineering Statistics (3-0-3)
Prerequisite: ISE 205

ISE 350 Begin Cooperative Work (0-0-0)
See contents in ISE 351.
Prerequisite: Same as ISE 351

ISE 351 Cooperative Work (0-0-9)
The Cooperative Work Program accounts for nine (9) credit hours, involves either a team-based or a single student-based project that is geared toward an integrated application of several pieces of Systems Engineering knowledge learned by the student in his undergraduate education thus far. The co-op project must address technical aspects of the practice of Systems Engineering, including analysis, experimentation and design, by utilizing the problem-solving techniques covered in the various required (core) and elective courses offered at the Systems Engineering department.
Prerequisite: Completion of 85 Credit Hours, Fulfillment of Departmental Requirements, ENGL 214

ISE 352 End Cooperative Work (0-0-0)
See contents in ISE 351.
Prerequisite: Same as ISE 351

ISE 361 Fundamentals of Data Base Systems (2-3-3)
This is a first course in database management systems, teaching database concepts, data modeling and database design. Fundamental database concepts, Relational Data Manipulation,
Data modeling, Capturing Business Rules, Normalization, Database system development process, Transaction, Processing, Distributed Processing, Data Warehouses, and Databases on the Web. Concepts and tools will be integrated in a small-group term project by designing and implementing an actual information system.

Prerequisite: Junior Standing

ISE 390 Seminars (0-0-0)
The purpose of this course is to raise students' awareness of contemporary issues in their discipline and otherwise. The student has to attend a required number of seminars, workshops, professional societal meetings or governmental agency conferences; at least half of these should address issues in his discipline. The student has to attend a required number of industrial visits.

Prerequisite: Junior Standing

ISE 391 Industrial Engineering Design (1-3-2)
Introduction to engineering design, formulation of design problems, the design process, design phases, IE and the design process, Quality function deployment for specifying design requirements, design strategies, generating alternatives, probabilistic consideration in design, communication issues, design evaluation, selection and implementation. Discussion of case studies including operations systems, manufacturing, quality, ergonomics, layout and scheduling. Includes team project with an application in manufacturing or service industry.

Prerequisite: ISE 205, ENGL 214, Junior Standing

ISE 399 Summer Training (0-0-0)
A continuous period of 8 weeks of training spent in industry to gain exposure and appreciation of the systems engineering profession. Students are required to submit a report and make a presentation about their summer training experience and knowledge gained before receiving a grade of Pass or Fail for the course.

Prerequisite: ISE 205, Approval of the Department, ENGL 214

ISE 402 Production Systems and Inventory Control (3-0-3)

Prerequisite: ISE 205

ISE 405 Stochastic Systems Simulation (2-3-3)
Basic discrete-event simulation modeling, queuing models, simulation languages, review of basic probability and statistics, random-number generators, generating random variables, output data analysis, validation of simulation models. A simulation language is used in the lab to illustrate simulation models on real case studies.

Prerequisite: ISE 205

ISE 411 Productivity Engineering and Management (3-0-3)
Introduction to productivity, productivity factors, measurement of productivity, planning for productivity, total productivity model, product base productivity improvement, employer based productivity improvement, productivity improvement programs, case studies and class project.

Prerequisite: Junior Standing
ISE 420 Quality Improvement Methods (3-0-3)
Introduction to principles and philosophies of total quality management, advance methods for process control, six sigma approach to quality, Quality function deployment (QFD) and Taguchi approach to quality and parameter optimization.
Prerequisite: ISE 320

ISE 421 Operations Research II (3-0-3)
Following topics from operations research with an emphasis on modeling and implementation are covered; integer programming, dynamic programming and nonlinear programming. Implementation using modeling software and spreadsheet is demonstrated on examples and case studies.
Prerequisite: ISE 303

ISE 422 Facility Layout and Location (3-0-3)
Introduction to facility planning issues. Material handling. Facility location and layout and computer-aided techniques and packages. Storage and warehousing functions, emphasizing quantitative and simulation techniques.
Prerequisite: ISE 303

ISE 425 Queuing Systems (3-0-3)
Introduction to Queuing Models and Their Applications, Elements and Characteristics of Queuing Models, Single Server queue, Birth Death Processes, M/M/1, M/M/s, M/G/1, Little Law, Priority Queues, Network of Queues.
Prerequisite: Senior Standing

ISE 429 Maintenance Planning and Control (3-0-3)
Maintenance Organization, Maintenance strategy, Forecasting maintenance work, Maintenance capacity planning, Component replacement decision models, Maintenance Measurement and Standards, Scheduling of maintenance, Maintenance material control, Quality of maintenance jobs, Maintenance productivity, Maintenance audit, Maintenance management information systems, Case Studies.
Prerequisite: Senior Standing

ISE 443 Human Factors Engineering (2-3-3)
Prerequisite: ISE 205

ISE 447 Decision Making (3-0-3)
Basic, decision-making model under certainty with multiple criteria as well as under pure Uncertainty, Risk, Risk with information and conflict with single criteria. Structuring decision problems as well as applications in systems engineering are emphasized through problem sets, case studies and term project.
Prerequisite: ISE 205, Junior Standing

ISE 448 Sequencing and Scheduling (3-0-3)
Scheduling problems, optimality of schedules, processing, basic single machine results, precedence constraints and efficiency, constructive algorithms for flow-shops and job-shops, dynamic programming approaches, branch and bound methods, integer programming formulations, hard problems and NP-completeness. Heuristic methods: general approaches and worst-case bounds, simulated annealing approach.

Prerequisite: ISE 303

ISE 460 Industrial Process Re-Engineering (3-0-3)
Introduction to function and process organization, strategy plan and business context, stockholder analysis, value and non value activities, process identification, process architect and align, understanding of existing process, mapping and process evaluation, measures and target setting, process visioning, process renew and re-engineering, element for essential and sustainability, continues improvements.

Prerequisite: ISE 323

ISE 461 Computer Aided Manufacturing and Robotics (3-0-3)

Prerequisite: ISE 322

ISE 463 Theory of Stochastic Processes (3-0-3)

Prerequisite: ISE 325

ISE 464 Industrial Information Systems (3-3-4)
Design of industrial information systems. Focus on the planning, control of the flow of engineering and industrial information. Information systems requirements, analysis, and design. Students are required to work on a project of applied nature.

Prerequisite: ISE 361

ISE 465 Industrial Safety (3-0-3)
The scope of occupational safety: Human safety, Environmental safety, Setting safety standard: Safety administration, Legal aspect of industrial safety.

Prerequisites: Junior Standing

ISE 470 Supply Chain Systems Modeling (3-0-3)
This course adopts a modeling approach to supply chains that is designed to study trade-offs between system costs and customer service. Topics covered include supply chain design, multi-location inventory-distribution models, bullwhip effect, delayed differentiation, and e-commerce and supply chain. The key insights provided by such system-wide models will be illustrated through the use of software packages, real cases discussion and presentations and term projects. In addition, the course will highlight the role of information technology in supporting supply chain operations.

Corequisite: ISE 402 or Approval of the Department
ISE 480 Reliability and Maintainability (3-0-3)
Introduction to Reliability Engineering, hazard and reliability functions, analyzing reliability data, reliability prediction and modeling, fault tree construction and decision tables, maintainability, maintenance and availability, reliability improvement.
Prerequisite: ISE 325

ISE 490 Senior Design Project (0-0-3)
A design course that draws upon various components of the undergraduate curriculum. The project typically contains problem definition, analysis, evaluation and selective of alternatives. Real life applications are emphasized where appropriate constraints are considered. Oral presentation and a report are essential for course completion. The work should be supervised by faculty member(s). Team projects are acceptable wherever appropriate.
Prerequisite: ISE 390

ISE 491 Special Topics in Operation Research (3-0-3)
A course in an area of operation research reflecting current theory and practice.
Prerequisite: Approval of the Department

ISE 492 Special Topics in Production and Quality Control (3-0-3)
A course in an area of production and quality control reflecting current theory and practice.
Prerequisite: Approval of the Department

ISE 493 Special Topics in Reliability and Maintenance (3-0-3)
A course in an area of reliability and maintenance reflecting current theory and practice.
Prerequisite: Approval of the Department

ISE 496 Industrial Strategic Planning & Balanced Scorecard (3-0-3)
Introduction to Strategic Planning and BSC, development of strategy plans, Creating the Strategy Focused Organization, Building Strategy Map, Building Strategy Map for Private sectors, Building Strategy Map for non-profit organizations, Develop Balanced Scorecard Cooperate, Creating Business Unit Synergy (Department BSC), Individual BSC (Defining Personal and Team Objectives).
Prerequisite: Senior Standing or Approval of the Department
MATHEMATICS

MATH 001 Preparatory Mathematics I (3-1-4)

MATH 002 Preparatory Mathematics II (3-1-4)
Prerequisite: MATH 001 or its equivalent.

MATH 101 Calculus I (4-0-4)
Prerequisite: One year preparatory mathematics or its equivalent

MATH 102 Calculus II (4-0-4)
Prerequisite: MATH 101

MATH 131 Finite Mathematics (3-0-3)
Prerequisite: One year preparatory mathematics or its equivalent

MATH 132 Applied Calculus (3-0-3)
Prerequisite: One year preparatory mathematics or its equivalent

MATH 201 Calculus III (3-0-3)
Prerequisite: MATH 102

MATH 202 Elements of Differential Equations (3-0-3)

Prerequisite: MATH 201

MATH 232 Introduction to Sets and Structures (3-0-3)

Prerequisite: MATH 102

MATH 260 Introduction to Differential Equations & Linear Algebra (3-0-3)

Note: Not to be taken for credit with MATH 202 or MATH 280

Prerequisite: MATH 102

MATH 280 Introduction to Linear Algebra (3-0-3)

Corequisite: MATH 201

MATH 301 Methods of Applied Mathematics (3-0-3)

Prerequisite: MATH 202 or MATH 260

MATH 302 Engineering Mathematics (3-0-3)

Note: Not to be taken for credit with MATH 280 or MATH 301

Prerequisite: MATH 201

MATH 305 Development of Mathematics (3-0-3)
History of numeration: Egyptian, Babylonian, Hindu and Arabic contributions. Algebra: including the contributions of Al-Khwarizmi and Ibn Kura. Geometry: areas, approximation of \(\pi \), the work of Al-Tousi on Euclid’s axioms. Analysis. The calculus: Newton, Leibniz,
Gauss. The concept of limit: Cauchy, Laplace. An introduction to some famous old open problems.

Prerequisite: MATH 102 or MATH 132

MATH 311 Advanced Calculus I (3-0-3)

Prerequisite: MATH 232

MATH 321 Introduction to Numerical Computing (3-0-3)

Note: Not to be taken for credit with CISE 301

Prerequisite: MATH 201, ICS 101 or ICS 102 or ICS 103

MATH 322 Quantitative Methods for Actuaries (3-0-3)
Algorithms; simplex and dual method; linear and quadratic programming; Solution of non-linear equations; finite differences; cubic splines; individual risk models; life tables. Floating-point arithmetic and error analysis. Interpolation. Polynomial interpolation. Numerical integration and differentiation. Data fitting. Solution of linear algebraic systems. Initial and boundary value problems of ordinary differential equations. This course section is designed to meet the Actuarial Science course degree requirement.

Note: Not to be taken for credit with Math 321 or CISE 301

Prerequisite: MATH 201, ICS 102 or ICS 103

MATH 330 Euclidean and Non-Euclidean Geometry (3-0-3)

Prerequisite: MATH 232

MATH 345 Modern Algebra I (3-0-3)
Review of basic group theory including Lagrange’s Theorem. Normal subgroups, factor groups, homomorphisms, fundamental theorem of finite Abelian groups. Examples and basic properties, integral domains and fields, ideal and factor rings, homomorphisms. Polynomials, factorization of polynomials over a field, factor rings of polynomials over a field. Irreducibles and unique factorization, principal ideal domains.

Prerequisite: MATH 232

MATH 355 Linear Algebra (3-0-3)

Prerequisite: MATH 280

MATH 399 Summer Training (0-0-2)
Students are required to spend one summer working in industry prior to the term in which they expect to graduate. Students are required to submit a report and make a presentation on their summer training experience and the knowledge gained.

Prerequisite: ENGL 214, Junior Standing, Approval of the Department

MATH 401 Methods of Applied Mathematics II (3-0-3)

Prerequisite: MATH 301

MATH 411 Advanced Calculus II (3-0-3)

Prerequisite: MATH 301

MATH 412 Advanced Calculus III (3-0-3)

Prerequisite: MATH 411

MATH 421 Introduction to Topology (3-0-3)

Prerequisite: MATH 311

MATH 425 Graph Theory (3-0-3)

Prerequisite: MATH 260 or MATH 280 or MATH 302

MATH 430 Introduction to Complex Variables (3-0-3)

Prerequisite: MATH 201

MATH 431 Introduction to Measure Theory and Function Analysis (3-0-3)

Prerequisite: MATH 311

MATH 440 Differential Geometry (3-0-3)

Manifolds in \mathbb{R}^n and their orientability. Tensor fields. Curves in 3-dimensional Euclidean space: the Frenet frame and formulae, curvature and torsion, natural equations. Surfaces in 3-dimensional Euclidean space: the first and second fundamental forms, the classification of surfaces, the fundamental theorem.

Prerequisite: MATH 260 or MATH 280 or MATH 302

MATH 442 Calculus of Variations and Optimal Control (3-0-3)

Prerequisite: MATH 202

MATH 450 Modern Algebra II (3-0-3)

Prerequisite: MATH 345

MATH 452 Applied Algebra (3-0-3)

Prerequisite: MATH 345

MATH 455 Number Theory (3-0-3)

Divisibility and primes. Congruences. Positive roots. Quadratic reciprocity. Arithmetic functions. Diophantine equations. Applications (e.g. cryptography or rational approximations).

Prerequisite: MATH 232 or Senior Standing

MATH 460 Applied Matrix Theory (3-0-3)

Prerequisite: MATH 260 or MATH 280 or MATH 302
MATH 465 Ordinary Differential Equations (3-0-3)
Prerequisite: MATH 202, MATH 280

MATH 470 Partial Differential Equations (3-0-3)
Prerequisite: MATH 301

MATH 471 Numerical Analysis I (3-0-3)
Prerequisite: MATH 321 or CISE 301

MATH 472 Numerical Analysis II (3-0-3)
Prerequisite: MATH 321 or CISE 301

MATH 480 Linear & Nonlinear Programming (3-0-3)
Prerequisite: Junior Standing

MATH 485 Wavelets and Applications (3-0-3)
Wavelets. Wavelet transforms. Multiresolution analysis. Discrete wavelet transform. Fast wavelet transform. Wavelet decomposition and reconstruction. Applications such as boundary value problems, data compression, etc.
Prerequisite: MATH 301 or EE 207 or CISE 315

MATH 490 Seminar in Mathematics (1-0-1)
This course provides a forum for the exchange of mathematical ideas between faculty and students under the guidance of the course instructor. The instructor arranges weekly presentations by himself, other faculty members and/or students, of lectures or discussions on topics or problems of general interest. The course culminates in the presentation by each
student of at least one written report on a selected topic or problem, reflecting some independent work and evidence of familiarity with the mathematical literature. With the permission of the instructor, students may work with other faculty members in the preparation of written reports.

Prerequisite: Any two of MATH 301, MATH 311, MATH 321, MATH 345

MATH 495 Industrial Mathematics (3-0-3)
Industrial and environmental problems. Theoretical foundations and computational methods involving ordinary and partial differential equations.

Prerequisite: MATH 301 or EE 207, MATH 321 or CISE 301

MATH 499 Topics in Mathematics (1-3, 0, 1-3)
Variable contents. Open for Senior students interested in studying an advanced topic in mathematics with a departmental faculty member.

Note: May be repeated for a maximum of three credit hours total.

Prerequisite: Senior Standing, Permission of the Department Chairman upon recommendation of the instructor.
ME 201 Dynamics (3-0-3)
Prerequisite: CE 201

ME 203 Thermodynamics I (3-0-3)
Prerequisite: MATH 102, PHYS 102

ME 204 Thermodynamics II (3-0-3)
Prerequisite: ME 203

ME 205 Materials Science (2-3-3)
Note: For non ME students
Prerequisite: CHEM 102, MATH 102

ME 210 Mechanical Engineering Drawing & Graphics (2-3-3)
Graphical Interpretation of machine components and assemblies through the study of orthographic projection to include auxiliary views; section drawings and full dimensioning; translation of design instruction into detailed and assembly drawings; drawing conventions including weldments, piping, referencing and surface finish notation; selection of tolerances based on design requirements.

ME 216 Materials Science and Engineering (3-0-3)
Corequisite: ME 217
Prerequisite: CHEM 101, MATH 102, PHYS 102

ME 217 Materials Lab (0-3-1)
The laboratory experiments are focused on introducing the basic techniques of metallographic, sectioning, polishing, etching, light metallographic and microstructure analysis. Determining mechanical properties (hardness, tensile, fatigue and creep properties) of steels, cast irons and non-ferrous as well as some polymeric materials and their structure properties relationship. Emphasizing and illustrating importance of these properties in manufacturing and design. Simple spread sheet based data analysis using the hardness, tensile, fatigue and creep tests results.
Corequisite: ME 216

ME 218 Introduction to Mechanical Engineering Design (1-3-2)
Tools for design process; Introduction to Mechanical engineering design process; Applications of scientific and engineering tools; Open-ended problem solving; Team-based projects; Design for manufacture; Ethical issues in design process; Communication skills.
Prerequisite: PHYS 102, ME 210

ME 307 Machine Design I (3-0-3)
Design process, review of stress, strain and deformation analysis as applied to mechanical design; properties of materials; review of static failure theories; designing against fatigue failures; element design; shafts, keys, couplings, power screws; bolted, riveted and welded joints.
Corequisite: ME 322, ME 323
Prerequisite: ME 216, CE 203

ME 308 Machine Design II (3-3-4)
Design of elements: bearings (journal and anti-friction), springs, spur, helical, bevel and worm gears; flexible drives (belts and chains); clutches and brakes; design optimization. Laboratory sessions to supplement and to apply the material covered in the lectures. Consideration of manufacturing aspects of the design (limits and fits). Study of projects considering the different stages of their design, manufacturing and assembly.
Prerequisite: ME 307

ME 309 Mechanics of Machines (3-0-3)
Kinematics of mechanisms, vector method of analysis of plane mechanisms. Static and dynamic analysis of machines, inertia forces, gyroscopic forces. Static and dynamic balancing, balancing machines. Dynamics and balancing of reciprocating engines. Flywheels, kinematic and dynamic analysis of cam mechanisms. Elements of mechanical vibrations, critical speeds and torsional vibrations.
Prerequisite: ME 201

ME 311 Fluid Mechanics (3-0-3)
Definition and properties of fluids. Fluid statics with applications. Basic fluid dynamic equations of continuity, energy and momentum with applications to different flow situations and flow measurement. Viscous effects, boundary-layer concepts, laminar and turbulent flow in pipes, open channel flow, fluid dynamics forces on immersed bodies. Modeling and dimensional similarity. Introduction to turbomachinery.
Prerequisite: MATH 201, ME 201, ME 203
ME 315 Heat Transfer (3-0-3)
An introduction to heat transfer by conduction, radiation, and convection. Steady-state solution for heat conduction applied to wall and pipe insulation, heat sources, and extended surfaces (fins). Unsteady heat transfer to plates, cylinders and spheres (Heisler charts). Black and gray body radiation systems and electric network analogy. Practical hydraulic and thermal analysis of forced and natural convection system with application to heat exchangers.
Prerequisite: ME 311

ME 316 Thermofluids Lab (0-3-1)
This lab course will deal with equal emphasis on fluid mechanics and heat transfer. All experiments conducted in this lab combine elements of theory and practice. Many of the concepts and basic theories which the student learns in the lectures of ME 311 and ME 315 are demonstrated and confirmed in the lab through different experiments.
Corequisite: ME 315
Prerequisite: ME 311

ME 322 Manufacturing Processes (3-0-3)
Manufacturing methods of metals and plastics including: metal casting, bulk forming, sheet metal forming, machining, welding, and plastic processing. Both quantitative and qualitative study of manufacturing processes with emphasis on process selection for optimum design.
Corequisite: ME 323
Prerequisite: CE 101 or ME 210, ME 216, ME 217

ME 323 Manufacturing Lab (0-3-1)
This lab course is a corequisite of ME 322. The laboratory experiments and demonstrations are focused on lab learning of various manufacturing processes – mainly casting, welding, sheet metal, extrusion, forging, polymers processing, precision measurements and metrology – dimensional variability modeling, machining (turning, drilling, and Milling) processes and Process Capability, CAD/CAM and CNC machining demonstration – Using the spreadsheet based data analysis of experimental data obtained in various experiments. Possible Industrial trips
Corequisite: ME 322
Prerequisite: CE 101 or ME 210, ME 216, ME 217

ME 350 Begin Cooperative Work (0-0-0)
See contents in ME 351.
Prerequisite: Same as in ME 351

ME 351 Cooperative Work (0-0-9)
A period of 28 weeks of industrial employment for Applied Mechanical Engineering students to work in appropriate industries or firms. Students are evaluated on their performance on the job and are required to submit an extensive formal report on their experience.
Prerequisite: ENGL 214, ME 307, ME 309, ME 315

ME 352 End Cooperative Work (0-0-0)
See contents in ME 351.
Prerequisite: Same as in ME 351

ME 399 Summer Training (0-0-0)
A continuous period of 8 weeks of summer training spent in the industry working in any of the fields of mechanical engineering. The training should be carried out in an organization with an interest in one or more of these fields. On completion of the program, the student is required to submit a formal written report of his work.

Prerequisite: ENGL 214, Junior Standing, Approval of the Department

ME 406 Manufacturing and Design (3-0-3)

Corequisite: ME 407

Prerequisite: (ME 322 and ME 323) or ISE 322

ME 407 Advanced Manufacturing Lab (0-3-1)
Laboratory demonstrations and experiments and hands on experience of: Measurements (Dimensional Metrology), Variability and Distributions, Manufacturing Tolerances and Process Capability Studies, Surface Roughness Analysis, Experimental Data Analysis to Develop Empirical Models, Use of Excel, and other statistical software's, Advanced Experiments in Machining, Machining Forces and Torque Models, Non Traditional manufacturing, CAD/CAM and CNC machining, Polymers processing and Rapid Prototyping. Integrated Manufacturing Project.

Corequisite: ME 406

Prerequisite: (ME 322 and ME 323) or ISE 322

ME 408 Rapid Prototyping and Digital Manufacturing (2-3-3)
The Rapid Prototyping course highlights the many technologies (3D Printing, SLA, SLS, SLM, LOM, and FDM) and concept modeling, rapid prototyping and digital manufacturing technologies, along with common features, that are available within the industry. Preparation, consideration factors, and analysis of rapid prototyping and other valuable topics are included in the course. Advantages and limitations of the various rapid prototyping technologies. Rapid tooling. Making informed rapid prototyping choices. Group projects to gain hands on experience in Rapid Prototyping and parts realization.

Prerequisite: Senior Standing, ME 322, ME 323

ME 409 Design and Manufacturing of Composite Structures (3-0-3)
This course provides basic competency in the design and manufacture of fiber-reinforced polymer composite structures. It will provide knowledge and understanding of the key aspects of composites design and various methods of composites manufacture. In addition, the course will introduce micromechanics, mechanical performance, durability, repair, recycling and applications of composites.

Prerequisite: Senior Standing

ME 410 Ceramics (3-0-3)
Fundamentals of ceramic materials including: atomic bonding, crystal structure, defects, physical properties, phase diagrams, and ceramic microstructure; Classification of ceramic materials including oxides, silicates, carbides, nitrides, glasses, cements, clays, refractories, and
glass-ceramics; Ceramic synthesis and processing; Ceramic properties including mechanical, thermal, dielectric, magnetic, and optical.

Prerequisite: (ME 216 and ME 217) or ME 205

ME 411 Senior Design Project I
This capstone design project course integrates various components of the curriculum in comprehensive engineering experience so that the basic sciences, mathematics, and engineering sciences which the student has learned in his freshman-to-senior years of study can be applied. It considers design of a complete project or system including establishment of objectives and criteria, formulation of the problem statements, preparation of specifications, consideration of alternative solutions, feasibility considerations, and detailed engineering designs. The design should take into consideration appropriate constraints such as economic factors, safety, reliability, ethics and environmental and social impact. Submission of a written report is an essential requirement for completion of the course. Team design projects, where appropriate, are highly encouraged.

Prerequisite: Senior Standing

ME 412 Senior Design Project II
Continuation and completion of project started in ME 411. Oral presentation and submission of final written report of the design project are essential requirements for the completion of the course.

Prerequisite: ME 411

ME 413 Systems Dynamics and Control
Dynamics of mechanical, fluid, electrical and thermal systems. Equations of motion. Dynamic response to elementary systems. Transfer functions and pole-zero diagrams. Simulation of dynamics of complex systems. Dynamic stability of systems. Open and closed-loop systems. Basic control actions. Laboratory sessions involve use of computers for simulation of dynamic systems and analysis of control systems.

Prerequisite: MATH 301, ME 201

ME 414 Design Project I
This is first part of AME specific Capstone Design Project course introduced to prepare a professionally written ME416 proposal by the project team and advisor as perquisite course for ME416. This course will facilitate the ground work completed in every respect to complete the meaningful projects in ME 416 from the day 1 of the project. And the proposal should be in a prescribed form with Gantt chart, and budget with material procurement forms (strategy and approval of ME workshop as well as other lab resources commitment), expected project deliverables and well defined roles of multiple faculty (if involved) in supervision of the project. The video lectures of the ME 414 with all prescribed forms with instructions will be available to all the enrolled students on the Web with some model (sample) project proposals. Team design projects, where appropriate, are highly encouraged. Students will work closely with their project adviser and are expected to spend about 3 hours per week /per student on the project.

Corequisite: ME 307

ME 416 Design Project II
The second part of this capstone design project course is completed in semester following the COOP Training and integrates various components of the curriculum in comprehensive engineering experience so that the basic sciences, mathematics, and engineering sciences which the student has learned in his freshman-to-senior years of study can be applied. It considers
design of a complete project or system including establishment of objectives and criteria, formulation of the problem statements, preparation of specifications, consideration of alternative solutions, feasibility considerations, and detailed engineering designs. The design should take into consideration appropriate constraints such as economic factors, safety, reliability, ethics and environmental and social impact. Oral presentation and submission of final written report of the design project are essential requirements for the completion of the course. Students Project Team will work closely with their project adviser and are expected to spend about 6 hours per week per student on the project.

Prerequisite: ME 414

ME 422 Propulsion Systems (3-0-3)

Note: Not to be taken for credit with AE 422

Prerequisite: ME 204, ME 311

ME 423 Energy Conversion (3-0-3)
Energy sources and their classification. Conventional energy conversion; power plant and vapor cycles. Renewable energy; solar energy with emphasis on solar cells, wind energy, OTEC systems, geothermal energy. Nuclear fission and types of fission reactors.

Prerequisite: ME 204, ME 315

ME 424 Maintenance Engineering (3-0-3)
Introduction to maintenance engineering; Condition monitoring of machines, plants & structures, various methods of condition monitoring: vibration acoustic emission, temperature, etc. and their practical applications. Interpreting the results of condition monitoring. Economics of Maintenance, Optimal maintenance strategies: Inspection intervals planning for maintenance crew, forecasting the spare parts and determining optimal stocking policy.

Corequisite: Senior Standing in ME or AME

ME 425 Compressible Fluid Flow (3-0-3)
Fundamentals of compressible fluid flow (gas dynamics) in relation to effects of area change (nozzles and diffusers), friction and heat interaction (Fanno and Rayleigh lines and isothermal flow), combustion waves (deflagration, explosion and detonation waves), normal and oblique shock waves and their effects on flow properties (extended diffusers and supersonic airfoils). Applications to flow through pipelines, subsonic, sonic and supersonic flights, turbomachinery and combustion.

Note: Not to be taken for credit with AE 325

Prerequisite: ME 311

ME 427 Turbomachinery (3-0-3)
Thermo-fluid dynamics aspects of fluid flow, kinematic relations and efficiencies of turbomachines. Two dimensional cascades; Turbine and Compressor cascade correlations and performance. Axial Turbines (two dimensional analysis), Axial Flow Compressors and Fans (two dimensional analysis), Centrifugal Compressors and Fans, Radial Flow Turbines, and preliminary design fundamentals of turbomachines and three dimensional considerations.

Prerequisite: ME 204, ME 311
ME 428 Structure of Flight Vehicles (3-0-3)
Statically determinate and indeterminate structures; aerodynamic and inertia loads, load factors; elasticity of structures, stress-strain relationships; mechanical properties of vehicle materials; fatigue; strength-weight comparisons of materials; sandwich constructions; stresses in beams, shear flow in thin webs, closed-section box beams; deflection analysis of structural systems; Castiglione's theorems, Rayleigh-Ritz method, finite difference method; redundancy in structures.
Note: Not to be taken for credit with AE 328
Prerequisite: CE 203

ME 430 Air Conditioning (3-0-3)
Thermodynamics of moist air; construction of the psychrometric chart; psychrometric processes; psychrometric systems; industrial processes, air conditioning systems; Air Conditioning for comfort and health- Indoor air quality, cooling and heating load calculations, duct design and air distribution methods; cooling towers.
Prerequisite: ME 204, ME 315

ME 431 Refrigeration (3-0-3)
Mechanical vapor compression refrigeration cycles (single-stage and multi-stage); refrigerant compressors; refrigerants; absorption refrigeration systems; thermoelectric cooling; flash cooling; gas cycle refrigeration; ultra-low-temperature refrigeration (cryogenics); food refrigeration; transport refrigeration; Design and performance evaluation problems in refrigeration systems and applications.
Prerequisite: ME 204, ME 315

ME 432 Internal Combustion Engines (3-0-3)
Types of engines and their operation; Four and two stroke engines; Thermodynamics of engine cycles; Engine design and performance parameters; Operating characteristics of spark and compression ignition engines; Thermochemistry in-cylinder combustion and combustion abnormalities; Analysis of fuel-air cycles; Analysis of intake, fuel and exhaust systems; Turbocharging and supercharging; Performance characteristics of actual engines.
Prerequisite: ME 204

ME 433 Fundamentals of Combustion (3-0-3)
Prerequisite: ME 204

ME 434 Wind Engineering (3-0-3)
Wind characteristics, boundary layer, turbulence, surface roughness, and measurements. Loads on static structures, wind tunnel modeling, wind induced vibrations, flutter, buffeting. Additional selected topics such as airborne pollution, sand motion, vehicle aerodynamics.
Prerequisite: ME 311

ME 435 Thermal Power Plants (2-3-3)
Forms of energy, oil, gas and coal. Combustion processes, energy cycles. Steam generators and their component design, turbines, load curves. Field trips to power plants and other energy installations during laboratory hours.

Prerequisite: ME 204, ME 315

ME 436 Fluid Power Systems (3-0-3)
Study of fluid power systems as used in industrial applications to transmit power by the flow of hydraulic fluids. Fluid power circuit diagrams including components such as valves, pumps, motors, filters, reservoirs and accumulators. Analysis of fluid leakage, hydrostatic transmissions, hydraulic stiffness, and performance of positive displacement pumps and motors.

Prerequisite: ME 311

ME 437 Design and Rating of Heat Exchangers (3-0-3)
Heat transfer mechanism leading to basic heat exchanger equations; classification and analyses of heat exchangers including geometry; heat transfer and flow friction characteristics; compact and shell and tube heat exchanger application and design procedures; fouling and its effect on life cycle analysis; maintenance methodology; flow induced vibration and noise in heat exchangers.

Prerequisite: ME 315

ME 438 Pumping Machinery (3-0-3)
Terminology and description of typical pump machinery. Momentum and energy transfer between fluid and rotor; Performance characteristics of centrifugal and axial flow fans, compressors and pumps; Various types of losses; Axial and radial thrust in dynamic pumps and thrust balancing device; Common problems in centrifugal pump operation; Positive displacement pumps; Water hammer problems in pump systems; Special problems in pump design and applications.

Prerequisite: ME 311

ME 439 Solar Energy Conversion (3-0-3)
Thermal aspects of solar energy conversion. Solar radiation measurement and prediction. Selected topics in heat transfer. Flat plate and focusing collector analysis. Solar energy storage. Solar systems including hot water, space heating and cooling, distillation and thermal power conversion.

Prerequisite: ME 315

ME 440 Convective Heat and Mass Transfer (3-0-3)
Boundary layers; laminar boundary layer heat transfer; turbulent boundary layer heat transfer; free convection boundary layers; enclosures; convection mass transfer; boiling and condensation; pool boiling; two-phase flow; laminar and turbulent film condensation.

Prerequisite: ME 315

ME 441 Energy and the Environment (3-0-3)

Prerequisite: ME 203 or equivalent

ME 442 Design of PV-Solar Systems *(3-0-3)*
The design of photovoltaic solar systems course covers the principles of photovoltaics and how to effectively incorporate photovoltaic systems with emphasis on stand-alone systems with a brief introduction to grid connected electrical systems. The content of the course includes system advantages and disadvantages, site evaluation, component operation, system design and sizing, installation requirements and recommended practices for important applications. Topics include: Introduction to Photovoltaic Systems, Solar Radiation, Site Surveys and Preplanning for Photovoltaic Systems, Photovoltaic System Components and Configurations, Cells, Modules, and Arrays for Photovoltaic Systems, Batteries, Charge Controllers, and Inverters, Photovoltaic System Sizing, Photovoltaic Systems Mechanical Integration, Photovoltaic Systems Electrical Integration, Installation, Commissioning, Maintenance, and Troubleshooting, Photovoltaic Systems Economic Analysis. PV Systems Design Software will be used throughout the course.

Prerequisite: Senior Standing, EE 204, EE 306

ME 443 Mechanics of Robotic Manipulators *(3-0-3)*
Basic configurations of robots and their industrial applications, Kinematics of robotic manipulators; coordinate transformations and workspace calculations, Robotic forces, moments, torques and compliant motions, Introduction to robot motion dynamics and control.

Prerequisite: ME 309

ME 444 Introduction to Mechatronics *(2-3-3)*
A multidisciplinary course that introduces the design and realization of mechatronics; Electro-mechanical systems controlled by microcontroller technology; Instrumentation and measurement system analysis and design; sensors and actuators; computer data acquisition and control; The integration of mechanisms, materials, sensors, interfaces, actuators, microcontrollers, and information technology.

Prerequisite: EE 202 or EE 204, Junior Standing

ME 445 Principles of Nanostructure Materials & Sensor Technology *(3-0-3)*
Technological needs, justification and scope; Nanostructure materials and their properties; Top down and bottom up manufacturing techniques as typified by electrochemical and laser machining, chemical vapor deposition (CVD), Physical vapor deposition (PVD), Sputtering, Sol-gel synthesis and Ball milling; Industrial applications and future potential; Introduction to sensor basics; Primary sensor mechanisms, electrical measurement techniques, Characterization of sensors, Sensor fabrication principles; Enabling technologies; Applications in Saudi oil, gas, petrochemical industry and utilities.

Prerequisite: (ME 216 and ME 217) or ME 205

ME 446 Computational Fluid Dynamics and Heat Transfer *(3-0-3)*
Introduction to computational fluid dynamics as an engineering tool for the analysis and design of thermal-fluid systems; Fundamental equations of fluid mechanics in differential and integral form and common approximations; Discretization and solution methods for incompressible flow; Application of numerical techniques to the solution of some practical fluid flow and heat transfer problem; Turbulence models and their implementation in CFD; Application of commercial CFD codes to illustrative fluid flow and heat transfer problems.
Prerequisite: ME 315

ME 450 Mechanical Engineering Experimentation (2-3-3)
Prerequisite: EE 202 or EE 204, ME 316

ME 451 Design and Analysis of Engineering Experiments (3-0-3)
The course deals with basic statistics, design of experiments, uncertainty and error analysis general characteristics of measurement systems, statistical analysis of experimental data, empirical modeling, experimental uncertainty analysis, as well as guidelines for planning and documenting experiments. Illustrative examples from industry and case studies of planned engineering experiments.
Prerequisite: EE 204, ME 307, ME 315

ME 452 Measurements and Lab Project (0-3-1)
Basic instrumentation and measurements in conducting the experiments -such as force, displacement, pressure, temperature, humidity, fluid level, fluid velocity, and flow rate, etc. Output signals, computerized data acquisition systems. Last 5 lab sessions will be devoted to group projects to integrate the knowledge in developing experimental system and experimental strategy (in ME 451 and ME452) in any of the following area: vibration analysis and condition monitoring, thermo fluid, manufacturing processes, materials testing, and characterization, or industry. Projects will be planned by course instructors a head of time (semester prior to teaching) in collaboration with other (Guest) faculty member or specialist from industry). The projects will be assigned at the beginning of the course.
Corequisite: ME 451

ME 459 Design and Operation of Renewable Energy Systems (3-0-3)
The course is primarily devoted to wind power and solar photovoltaic technologies, their engineering fundamentals, conversion characteristics, operational considerations to maximize output, and emerging trends. Explores all aspects of a variety of wind and solar energy systems, including both stand-alone and grid-connected systems. The discussion of wind power includes the theory of induction machine performance and operation as well as generator speed control, while the solar PV section includes array design, environmental variables, and sun-tracking methods. Latest technologies and developments in the field contra-rotating wind turbines, offshore wind farms, and photovoltaic technologies. Determining economic profitability of potential RE energy projects primarily wind and solar. Use of software tools in integrating the components of RE projects including energy storage, power electronics, and design of both stand alone and grid connected system, plant economics.
Prerequisite: Senior Standing, EE 204, EE 306

ME 460 Thermal Desalination Systems (3-0-3)
Prerequisite: ME 315, ME 204
ME 461 Risk Management Tools in Systems Design and Operation (3-0-3)
The assessment and management of risk, uncertainty, and reliability are critical to the success of any engineering venture today, this course deals with understanding, theory and methodology and tools in assessment and management of risk, uncertainty, and reliability in engineering systems and enterprises. Quantification of Risk and its Impact. Applications will be explored through case studies in some of the following area; environmental, water resources and technology management, clean energy, safety-critical systems, and reliability modeling of multiple failure modes in complex systems. Risk Assessment and management in systems operation.
Prerequisite: Senior Standing

ME 462 Products and Systems Reliability (3-0-3)
Prerequisite: ME 307

ME 463 Tool Design (3-0-3)
Limits, fits, tolerance charts. Part analysis, process selection and operations sequence planning. Integrating and combining operations. Workpiece control, cutting tools, dies, and work holding devices. Tooling Design in manufacturing - specifically for machining, and sheet metal forming Metal cutting economics and process selection.
Prerequisite: ME 307

ME 464 Quality in Manufacturing (3-0-3)
Prerequisite: ME 322, ME 323

ME 465 Designing Robust Products and Systems (3-0-3)
This course will introduce the Taguchi design improvement technique. Students will gain hands-on application experience to design robust products and processes as well as solve production problems by reducing performance variations. The tools to robustly design components, products and systems and their manufacturing process will be reviewed. The course emphasized the use of Taguchi's Robust Design Technique as an effective ways to reduce the product design cycle, especially when coupled with computational simulation techniques. Real-life examples will be used to show the applicability of Taguchi's methodology to optimize products, components and processes. Main topics covered by the course are: Introduction to the Engineering Design Process, Design of Experiments using the Taguchi Method, Robust Design.
Prerequisite: ME 406 or ME 451

ME 466 Fundamentals of Heat Treatment (3-0-3)
Principles of phase transformations, heat treatment, and mechanical properties as applied to ferrous and non-ferrous metals and alloys. Heat treatment processes including: normalizing,
hardening, tempering, annealing, surface hardening. Applications of heat treatment and surface hardening techniques; Experimental aspects of heat treatment science and technology will be covered using lab resources of Materials Science Lab, Advanced Materials Science Lab and ME Workshop.

Prerequisite: ME 322, ME 323

ME 468
Casting and Welding Engineering
(3-0-3)
Metallurgical and engineering principles applied to melting, casting and solidification. Testing and evaluation of castings; Foundry processes; Introduction to the metallurgy of welding; Material and process selection, codes and specifications, weldment design and testing; Welding defects; Analysis of industrial welding processes; Laboratory experience in foundry, production and evaluation of weldments; Casting and welding demonstrations, experimentation and project(s) work will be conducted in Casting and Welding areas of ME Workshop. Two industrial visits will be made.

Prerequisite: ME 322, ME 323

ME 469
Computer-Aided Manufacturing
(3-0-3)
High volume discrete parts production systems; CAD/CAM fundamentals; Numerical Control (NC) manufacturing systems. Part Programming; NC justification, advances in NC (CNC, DNC, adaptive control); Tooling for NC and CNC; Overview of group technology, flexible manufacturing systems (FMS), and robotics in manufacturing. Related laboratory experiments, CNC Programming, and projects will be done on CNC machines and associates CAD/CAM software available in ME Workshop.

Prerequisite: ME 322, ME 323

ME 471
Mechanical Metallurgy
(3-0-3)

Prerequisite: ME 216, ME 217

ME 472
Corrosion Engineering I
(3-0-3)

Prerequisite: ME 216, ME 217

ME 473
Corrosion Engineering II
(3-0-3)
Review of important principles of corrosion protection; Effect of atmospheric composition, climatic condition and industrial pollution on metallic corrosion; Erosion and cavitation; High-pressure and high-temperature corrosion; Corrosion in steam generation plants, pressure vessels and its mitigation; Reinforced concrete corrosion; Design of cathodic protection systems for various structures; Surface preparation, applications and designing of coating systems; Seawater-induced corrosion and scaling in major desalination plant components; Laboratory studies related to inspection and testing of coating, evaluation of inhibitors, cathodic protection measurements and corrosion resistance of materials.
Prerequisite: ME 472

ME 474
Physical Metallurgy
(3-0-3)
Prerequisite: ME 216, ME 217

ME 475
Mechanical Behavior of Materials
(3-0-3)
Prerequisite: ME 307

ME 476
Non-Metallic Materials
(3-0-3)
Prerequisite: ME 216, ME 217

ME 477
Non-Ferrous Extractive Metallurgy
(3-0-3)
Prerequisite: ME 204, ME 216, ME 217

ME 478
Iron and Steel Making
(3-0-3)
Introduction to extractive metallurgy and iron ore dressing including the following topics: iron ores, mining, and ore dressing. Production of pig iron. The blast furnace. Production of steel. Bessemer process, basic oxygen process, open-hearth process, direct reduction process, and electric-furnace process. Continuous casting.
Prerequisite: ME 216, ME 217

ME 479
Modern Materials
(3-0-3)
Electrical, magnetic, optical and thermal properties of materials. Advanced ceramics, composites. Advanced engineering plastics. High temperature materials. Advanced coatings. Advanced material processing such as rapid solidification and powder metallurgy; selection of modern materials.
Prerequisite: ME 216, ME 217

ME 480
Plastics Materials and Processing
(3-0-3)
Prerequisite: ME 205 or (ME 216 and ME 217)

ME 481
Advanced Dynamics
(3-0-3)
Prerequisite: ME 201
ME 482
Mechanical Vibrations
(3-0-3)
Free and forced vibrations; Applications to systems with one-, two-, and multi-degree of freedom; Viscous, hysteretic, and Coulomb damping; Response to general periodic excitations; Transient vibration and the phase method; Principal and coupled coordinates; Dynamic vibration absorbers; Energy methods and Rayleigh’s principle; Laboratory sessions on vibration measuring instruments, vibration measurement techniques, and experiments to illustrate various vibration phenomena studied.
Prerequisite: ME 201

ME 483
Mechanisms
(2-3-3)
Prerequisite: ME 309

ME 484
Acoustics
(3-0-3)
Prerequisite: ME 201, MATH 301

ME 485
Mechanical System Design
(3-0-3)
Mechanical systems: definition and classification; the engineering design process; Need, identification and problem definition; Concept generation and evaluation; Embodiment design. Modeling and simulation; Materials selection and materials in design; Materials processing and design; Design for X. Risk, reliability and safety; Robust and quality design; Economic decision making; Cost evaluation; Legal and ethical issues in design; Detail design; Case studies; Projects.
Prerequisite: Senior Standing

ME 486
Optimization of Mechanical Systems
(3-0-3)
Formulation and simulation of mechanical engineering systems involving dynamics, kinematics, and machine design and thermo-fluid systems; The concept of optimization; Analytical and numerical methods such as unconstrained and constrained optimization, Lagrange multipliers, linear programming for optimum design of mechanical systems. Lab demonstration sessions involve formulation and solution of optimization problems using computers and existing software packages during the design process.
Prerequisite: ME 307, ME 315

ME 487
Mechanics of Materials
(3-0-3)
Prerequisite: CE 203
ME 488 Systems Control (3-0-3)
Classical control techniques: basic control actions; Design of system by means of root-locus method and Bodes plots; Control system synthesis. Modern control techniques: state variable representation. State variable feedback; Linear quadratic controller; Laboratory demonstration sessions involve utilization of control of software for analysis and design of control system.
Corequisite: ME 413

ME 489 Finite Element Analysis in Mechanical Design (3-0-3)
Introduction to Finite Element Method and its application in different mechanical problems including: static loading of beam and beam structure, free vibration of beam and beam structures, 2-D plane stress and plane strain, elasticity, and 2-D steady state heat conduction. Using a commercial FE software, in solving various 2-D and 3-D design problems.
Prerequisite: ME 307

ME 490 Special Topics in Mechanical Engineering (3-0-3)
Prerequisite: To be set by the ME Department

ME 491 Special Topics in Energy (3-0-3)
Prerequisite: To be set by the ME Department

ME 492 Special Topics in Dynamics & Control (3-0-3)
Prerequisite: To be set by the ME Department

ME 493 Special Topics in Materials & Manufacturing (3-0-3)
Prerequisite: To be set by the ME Department

ME 494 Fundamentals of Nondestructive Evaluation (3-0-3)
Principles of ultrasonic and elastic wave propagation; Ultrasonic transducers, and instrumentation; Ultrasonic inspection techniques; Defects and material ultrasonic characterization; Introduction to acoustic emission AE techniques; AE data collection and analysis; Industrial applications of AE; Basic principles of magnetic particle inspection MPI; MPI techniques and equipment; Application of MPI; Fundamental Eddy current concepts; Eddy current instrumentation, and inspection principles; Techniques for liquid penetrant inspection, and applications; Fundamental theory of radiation; Equipment, and inspection techniques for radiation testing; Selected radiographic application; Radiation safety.
Prerequisite: Senior Standing

ME 495 Directed Research / BSc Research Thesis (3-0-3)
A well monitored and structured BSC Thesis/Directed Research Course for Active Research Projects-which could be taken only as a onetime Elective Special Topic. It is only open to students having a GPA of 3 or above and consent of instructor is mandatory. Faculty conducting the course must submit a formal well written program of research work and deliverables and grading policy in semester prior to enrollment for approval from department. Students can start working on the topics a head of time prior to formal enrollment as a course after its approval.
Prerequisite: Senior Standing or Consent of the Instructor
MANAGEMENT

MGT 210 Business Communication (3-0-3)
Communication process, communication styles, and communication forms in organizations. Emphases are on developing skills essential for effective communication. Coverage includes fundamentals of business writing, patterns of business messages, report writing, public speaking and oral reporting, verbal and nonverbal communication, use of visual and presentation aides, and cultural and international dimensions of communication.
Prerequisite: ENGL 214

MGT 301 Principles of Management (3-0-3)
Overview of the evolution of management thought; the business environment and context; the basic functions of planning, organizing, staffing, leading and controlling; the basic processes of leadership, decision making, communication, and motivation; groups, teams, conflict, power, and politics; and overview of the fields of human resources management, operations management, management information systems, international management, and organizational change and development.
Prerequisite: ENGL 214

MGT 310 Organization Behavior (3-0-3)
Deals with behavior of individuals and groups in organizations and the related organizational processes, influences, and consequences. Emphasis is on individual, group, and organizational performance. Topics include an overview of the field of organizational behavior, organizational structure and design, organizational culture, learning, personality, attitudes and perceptions, motivation theories and their application, stress and stress management, teams and group dynamics, communication, decision making, conflict and conflict management, leadership, influence, power, organizational politics, organizational change and development, and organizational behavior in the global context. Instructional techniques will include teamwork and oral and written presentations.
Prerequisite: MGT 301

MGT 311 Legal Environment (in Arabic) (3-0-3)
Business legal system in Saudi Arabia, legal concepts dealing with business activities and traders, Saudi Arabian laws that govern the establishment and operations of corporations and other business enterprises, negotiable instruments, external legal frameworks and their relationships to the Saudi Arabian business legal environment.

MGT 312 Ethics and Social Responsibility (3-0-3)
Explore ethical questions that confront a manager when facing social, political, and legal issues in the conduct of day-to-day business and long-term planning. Examine the role of business in formulating social conscience, and learn how to recognize and address ethical issues and critically think about ethics and social responsibility in the business context.
Prerequisite: MGT 301

MGT 350 Begin Cooperative Work (0-0-0)
See contents in MGT 351.
Prerequisite: Same as in MGT 351

MGT 351 Management Cooperative Work (0-0-6)
Twenty-eight weeks of practical training in Management or related area in a selected organization. The training program must be approved and the student's progress during his co-op period must be monitored. The student is expected to write a co-op report under the supervision of a faculty member in accordance with university regulations.

Prerequisite: ENGL 214, At least 85 credit hours

MGT 352 End Cooperative Work

See contents in MGT 351.

Prerequisite: Same as in MGT 351

MGT 412 Entrepreneurship and Small Business Management

Starting, planning, organizing, and managing a small Business. Coverage include the foundations of entrepreneurship, the entrepreneurial thinking and mind, identifying opportunities, developing a business plan, ownership issues, financing the venture, marketing strategies, human resources planning and management, facilities acquisition and operation, materials and supplies management, profit and cash flow planning and management, budgeting and controlling, use of computer and technology, and the future of family-ownership.

Prerequisite: MGT 301, MKT 250, FIN 250

MGT 413 International Management

This course examines cross-cultural and international management issues, and analyzes the problems of managing in an international marketplace. It focuses on cultural and regional diversity and differences, political and economic influences, global market factors, and other contingencies with which managers of multinational enterprises must contend. The course covers an array of management practices – from human resource staffing, to leading and motivating a multi-cultural workforce, to creating strategic alliances for both large and small international firms.

Prerequisite: MGT 301

MGT 430 Organizational Leadership

This course focuses on leadership concepts, theories and applications of managerial leadership. The topic of leadership effectiveness is of special interest in this course. The course covers many issues related to leadership such as the nature of managerial work, perspective on effective leadership behavior, participative leadership, delegation and empowerment, power and influence, theories of leadership, strategic leadership, developing leadership skills, ethical leadership and diversity.

Prerequisite: MGT 301

MGT 440 International Business

A survey of international business operations, including organization structure, finance, marketing, cultural differences, global trade, capital markets and economic growth, impact of international organizations and regional trading blocs, corporate global competitiveness, and global strategies.

Prerequisite: MGT 301

MGT 449 Strategic Management

This is a capstone course in the College. It integrates the knowledge gained in other courses to develop the strategic perspective of the organization internal operation and its competitive position in its environment. Students will be put into the position of strategic managers or
teams and will be required to make decisions and strategic choices about the long term direction of organizations and to justify those decisions and choices through oral and written communication. Case studies and analysis will be used extensively. Specific topics include mission and vision, internal and external assessments, strategies and strategic choices, and strategies in the international environment, and strategy implementation. Instructional techniques include cases, teamwork, and oral and written presentations.

Prerequisite: MGT 301

MGT 450 Management of Innovation and Change (3-0-3)

This course content covers two interrelated dimensions: Innovation and Change. The focus is on the need to keeping introducing innovations and organizational changes with the view to upgrade individual and organizational performance whatever the industry or sector the public and private firm is in. The course will allow students to learn how to manage new ideas, products, and processes and implement new methods of organization. It enhances team work, knowledge sharing and innovativeness.

Prerequisite: MGT 301

MGT 495 Special Topics in Management (3-0-3)

Focuses on specific areas of management that reflect contemporary topics not covered by the listed courses.

Prerequisite: MGT 301 or HRM 301
MANAGEMENT INFORMATION SYSTEMS

MIS 215 Principles of Management Information Systems (3-0-3)
Information systems concepts and principles with managerial emphasis. Information systems for operational, tactical and top management. Strategic impact of technologies on organizations.

MIS 300 Fundamentals of Electronic Commerce (2-2-3)
E-Commerce fundamentals; E-Commerce business models; infrastructure; electronic payment systems and E-commerce security; Development, implementation, marketing and managing E-Commerce applications. Benefits and limitations, legal, ethical and global issues.
Prerequisite: MIS 215 or ICS 102

MIS 301 Business Systems Analysis & Design (2-2-3)
Examining the design of information systems from a problem-solving perspective. Providing a methodological approach to developing computer systems including feasibility studies, systems planning, analysis, design, testing, implementation, and maintenance. Emphasis is on the strategies and techniques of systems analysis and design for producing logical methodologies for dealing with complexity in the development of information systems.
Prerequisite: MIS 215

MIS 302 Business Applications Development (3-0-3)
Programming process with emphasis on program design and quality assurance and control. End user systems versus traditional systems development issues. Advanced HCI concepts and principles. Common business topics: data validation, report taxonomy, files and database processing. RAD methodologies, techniques, and tools. RAD success and risk factors. User documentation development techniques and tools. Application deployment issues. Emphasis on the development of end-user-focused, high quality business applications with user-centered design and using RAD methodologies, techniques, and tools.
Prerequisite: ICS 102

MIS 311 Business Data Management (2-2-3)
Prerequisite: ICS 102

MIS 315 MIS Innovation and New Technologies (3-0-3)
Prerequisite: MIS 215

MIS 320 Knowledge Management (3-0-3)
Introduction to Knowledge Management (KM) – Knowledge Management (KM) to gain competitive advantage. KM for innovation, KM’s emerging systems (Enterprise 2.0, Semantic Web), E-Knowledge Management. KM Development Methods.
Prerequisite: MIS 215
MIS 325 Human Resources Information Systems (3-0-3)
Prerequisite: MIS 215

MIS 345 Information Technology in Society (3-0-3)
Prerequisite: MIS 215

MIS 350 Begin Cooperative Work (0-0-0)
See contents in MIS 351.
Prerequisite: Same as in MIS 351

MIS 351 Cooperative Work (0-0-6)
A 28 week industry-based learning for MIS students to get practical experience in the area of Management Information Systems with reputable business organizations as approved by the Department and guided by a coop advisor. Evaluation of performance through submission of progress reports, employer’s feedback, final report, and presentation. Student’s defense of his coop work by a panel of faculty members inclusive of the coop advisor.
Prerequisite: ENGL 214, At least 85 credit hours

MIS 352 End Cooperative Work (0-0-0)
See contents in MIS 351.
Prerequisite: Same as in MIS 351

MIS 355 Enterprise Systems (3-0-3)
Architecture, setup, configuration, operations and management of system that is of "enterprise class". Fundamentals of business process and business process re-engineering concepts. Selection, process mapping, GAP analysis, and implementation of enterprise systems. Enterprise modules and decision analysis tools. Use of project management techniques to emphasize team dynamics and management skills.
Prerequisite: MIS 215

MIS 365 Enterprise Architecture (3-0-3)
Introduction to Enterprise Architecture: Enterprise architecture frameworks, Systems integration, Infrastructure and content management, System administration, Data/information architecture and data integration, Risk management, Software as a service. Emerging technologies.
Prerequisite: MIS 215

MIS 375 Human Computer Factors in Systems Design (3-0-3)
Factors related to both people interaction with technology, and the ways of technology effects on humans’ performance. An introduction to human related to the design of information
systems. Emphasis on the human component of human-computer interaction (HCI), and the
process of user-centered design and evaluation. Develop knowledge and skills of creating
enhanced human-computer interfaces and user-computer interaction designs.
Prerequisite: MIS 215

MIS 405 IS Project Management
(3-0-3)
Project management fundamentals and strategies. Project management body of knowledge.
Human aspect of project management. Project Management processes, methods, techniques,
tools, and implementation issues. Systematic methodology for initiating, planning, executing,
controlling, and closing projects in team based environment.
Prerequisite: MIS 301

MIS 410 Management Support Systems
(2-2-3)
Introduction to Management Support Systems (MSS): Decision Support Systems,
Collaborative Work Systems, Executive Support Systems, Expert Systems, and Neural
Networks. Impact of MSS on decision making. Exposure to MSS tools and development
methods. Integration of MSS. Team projects to develop MSS.
Prerequisite: MIS 311

MIS 411 Database Applications Development
(3-0-3)
Multi-tier application architecture concepts and technologies. Advanced SQL including
procedural, embedded SQL, client-side and server-side SQL. Transaction management,
consider multi-user system including concurrency control and security. Advanced database
concepts including distributed and object-oriented databases, and data warehouse. Database
application implementation issues Special emphasis is on development of client/server database
applications.
Prerequisite: MIS 311

MIS 415 Computer Supported Collaborative Work
(2-2-3)
Comprehensive overview of Computer Supported Collaborative Work (CSCW),Group
Dynamics, Collaboration Architectures, Groupware and Group Tools, Asynchronous and
Synchronous Collaboration, Video in Collaboration, Web-based Collaboration, Collaborative
Virtual Environments, Facilitation and leadership, Integration with other computerized
systems, Exposure to literature and cases and Team-based projects.
Prerequisite: MIS 311

MIS 490 Information Resources Management
(3-0-3)
Theories and practices in the management of organizational information systems resources.
Frameworks for introduction, evolution and assimilation of information systems into an
an organization. Align IT strategy with business strategy. Roles of IT and people using,
Prerequisite: MIS 405

MIS 499 Special Topics in MIS
(3-0-3)
Coverage of the contemporary and advanced MIS topics such as data management, information
processing, decision making, social implications of IT, and emerging technologies.
Prerequisite: MIS 311
MKT 250 Principles of Marketing (3-0-3)
Introduction to the basic concepts and principles of marketing. Focuses on providing students with a conceptual framework for understanding the role of marketing in society and the firm. Topics include the marketing concept, market segmentation, target marketing, demand estimation, product management, channels of distribution, promotion, and pricing.
Prerequisite: ENGL 214

MKT 410 Consumer Behavior (3-0-3)
Introduction to the concepts and frameworks for understanding the behavior of consumers relating to evaluation, choice, purchase, consumption, and disposal of products. Topics include examination of consumer motivations in product choice, consumer perceptions, learning, attitudes, information processing, and decision making. Also included are the influence of culture, social class, family, and reference groups on the behavior of consumers.
Prerequisite: MKT 250

MKT 345 Marketing Research (3-0-3)
Introduction to the concepts, principles, and techniques used in gathering, analyzing, and interpreting data for marketing decisions. Topics include the role of information in marketing decisions, research problem formulation, research design methods, measurement and design of research instruments, sampling design, data collection methods, data analysis, and presentation of research results.
Prerequisite: MKT 250, STAT 211

MKT 350 Begin Cooperative Work (0-0-0)
See contents in MKT 351.
Prerequisite: Same as in MKT 351

MKT 351 Cooperative Work (0-0-6)
Twenty-eight weeks of practical training in marketing or related area in a selected organization. The training program must be approved and the student's progress during his co-op period must be monitored. The student is expected to write a co-op report under the supervision of a faculty member in accordance with university regulations.
Prerequisite: ENGL 214, At least 85 credit hours

MKT 352 End Cooperative Work (0-0-0)
See contents in MKT 351.
Prerequisite: Same as in MKT 351

MKT 360 Product & Brand Management (3-0-3)
Examination of concepts, tools, and frameworks used in management of the product component of marketing strategy. Topics include formulation of product strategy and policy, brand management, packaging and labeling, product portfolio and life cycle management, and new product development.
Prerequisite: MKT 250

MKT 370 Integrated Marketing Communications (3-0-3)
Focuses on the promotion aspect of the marketing mix. Discusses the elements of the promotional mix (advertising, personal selling, sales promotion, direct marketing, and public relations) and their use in creating synchronized, multi-channel, customer-based communications. Topics include communication theory, setting communication objectives, message planning and evaluation, and choice of communications media.

Prerequisite: MKT 250

MKT 380 Marketing Channels
(3-0-3)
Examines issues and strategies relating to the distribution of products/services to final consumers or end-users. Both distribution channel management and physical distribution issues are examined. Emphasis is on the role such strategies play in the overall marketing plan. Topics include physical distribution strategies, warehousing and inventory management, distribution channel design, selection, and management, channel conflict, cooperation, and channel control.

Prerequisite: MKT 250

MKT 420 International Marketing
(3-0-3)
Focuses on the application of marketing principles and strategies to international markets. Emphasizes the need for modification and/or adaptation of marketing thinking and practice in foreign markets to accommodate national/regional environmental differences. Topics include analysis of the international market environment, assessing global market opportunities, foreign market entry modes, and developing product, pricing, promotion, and distribution strategies for international markets.

Prerequisite: MKT 250

MKT 430 Services Marketing
(3-0-3)
Focuses on the processes of planning, organizing, and implementing marketing efforts in service organizations. Topics include examination of differences between services and physical goods, frameworks for understanding and positioning service organizations in the marketplace, creating and delivering services, costing and pricing issues for services, and management of demand and customer mix of service organizations.

Prerequisite: MKT 250

MKT 440 Retail Management
(3-0-3)
Introduction to principles and methods applied in the management of retail operations. Topics include analysis of retail structure, strategic planning for retail operations, financing retail operations, organizing and staffing a retail enterprise, location and site decisions, merchandise planning, store design and layout, buying and inventory management, pricing, developing customer support services, and franchising.

Prerequisite: MKT 250

MKT 450 Strategic Marketing
(3-0-3)
Analytical integration of concepts, tools, and frameworks for analyzing, planning, implementing, and controlling marketing strategies and policies. Adopts a problem-solving orientation and holistic, integrated view of product, pricing, promotion, and distribution issues. Topics include strategies for building customer satisfaction, market-oriented strategic planning, frameworks for analyzing and managing product portfolios, demand estimation and forecasting, analysis of business and consumer markets, new product development, and pricing, promotion, and distribution strategies.

Prerequisite: MKT 250
MKT 460 Advertising (3-0-3)
Examines the role of advertising and sales promotion in the marketing program. Adopts a communication-theory perspective to management of advertising and sales promotion activities. Advertising-related topics include organization of advertising activities, setting advertising objectives, planning and developing advertising campaigns, message and media strategies, budgeting advertising expenses, and evaluation and control of the advertising efforts.
Prerequisite: MKT 250

MKT 470 Personal Selling and Sales Management (3-0-3)
Provides an appreciation and understanding of the role of the salesperson focusing what is required to make an effective sales presentation. Topics include; the approach, qualifying prospects, questioning to determine needs, presentation and demonstration of product benefits, handling objections, and closing the sale. Also covered are the role and responsibilities of the sales manager related to planning, implementing, and controlling the firm's personal selling function. Topics here include; analysis and design of sales territories, recruitment, selection, training, motivation, and compensation of sales personnel, evaluation of sales performance, and ethical issues arising in sales and sales force management.
Prerequisite: MKT 250

MKT 480 Internet Marketing (3-0-3)
Examines use of the Internet in the marketing of goods and services. Topics include basic issues in web site development, online marketing research, and use of the internet for direct marketing, marketing communications, and product distribution. Real world projects will provide opportunities for application.
Prerequisite: MKT 250

MKT 490 Business-to-Business Marketing (3-0-3)
Examination and analysis of the unique aspects of marketing goods and services to organizational buyers rather than final consumers. Topics include in-depth examination of business to business markets, complex nature of business-to-business buying behavior, methods of business-to-business market research, developing business-to-business marketing strategy, roles of product strategy, personal selling, promotion, distribution, and pricing strategies in business-to-business marketing.
Prerequisite: MKT 250

MKT 495 Special Topics in Marketing (3-0-3)
Focuses on specific areas of marketing that reflect contemporary topics not covered by the listed courses.
Prerequisite: MKT 250
OPERATIONS MANAGEMENT

OM 210 Operations Management (3-0-3)
Production systems; capacity and facility location problems; layout planning; forecasting;
production scheduling and control; inventory and quality control.
Prerequisite: STAT 211

OM 310 Quantitative Methods for Management (3-0-3)
Decisions theory, linear programming, simplex method and duality. Inventory control under
certain and uncertain demand. Network models including traveling salesman problem,
maximal flow problem and PERT/CPM networks.
Prerequisite: OM 210

OM 320 Introduction to Supply Chain Management (3-0-3)
The Course is designed to introduce the students to the subject of “Supply Chain
Management”. This course contents includes, but not limited to the following: Supply Chain
Management & Competitive strategy, Customer fulfillment strategy, Design and Analysis of
Global Supply Chain Management, In addition the course addresses recent developments in
Supply Chain Management, such as Chain Optimization, Collaboration & Integration.
Prerequisite: MGT 301, OM 210

OM 405 Production Planning and Control (3-0-3)
Facilities location and design. Job design, line balancing, aggregate planning, project
planning, project management, operations, scheduling, inventory management.
Prerequisite: OM 310

OM 407 Quality Control and Reliability (3-0-3)
Analysis and design of quality control systems and procedures. Topics to include inspection
policies, sampling, reliability engineering, and product testing.
Prerequisite: STAT 211

OM 420 Operations Research (3-0-3)
Integer programming, dynamic programming, simulation, queuing theory, Markov process.
Prerequisite: OM 310
PHYSICAL EDUCATION

PE 001 Preparatory Health and Physical Education I
(0-2-1)

PE 002 Preparatory Health and Physical Education II
(0-2-1)
Addictive habits, risk and prevention. Muscular strength, definition and assessment. Obesity, definition, risk and prevention. Physical Education: fundamental and practice of specified sports. Topics related to health education represent 20% of the course.
Prerequisite : PE 001

PE 101 Health and Physical Education I
(0-2-1)
Health: blood pressure, heart rate, cholesterol. Safety: CPR (Cardio Pulmonary Resuscitation) and techniques. Physical Education: rules, tactics and practice of specified sports. Topics related to health education represent 20% of the course.
Prerequisite : Freshman Standing

PE 102 Health and Physical Education II
(0-2-1)
Body Structure: skeletal system, muscular system. Sports injuries. Physical Education: rules, tactics and practice of specified sports. Topics related to health education represent 20% of the course.
Prerequisite : PE 101
PETTROLEUM ENGINEERING

PETE 201 Introduction to Petroleum Engineering (1-0-1)
The course's main goal is to provide the student with an overview of the petroleum industry: its history, technical achievements, role in the global economy and future prospects. A brief introduction to modern exploration, production and processing operations is included as well as highlights of the petroleum industry in Saudi Arabia and the Middle East. The PETE curriculum at KFUPM is also highlighted.

PETE 203 Drilling Engineering I (2-3-3)
The course introduces the basic concepts, theory and practices in drilling engineering. Topics include an introduction to drilling engineering, rotary drilling systems and operations, well control and monitoring systems. Specifically, drilling fluids, drilling hydraulics, formation pore and fracture pressure estimation, design of mud weight and kick evaluation are discussed. Some practical applications such as cementing and basic concepts of casing, drilling bits and bottom-hole assembly are presented. Laboratory sessions cover drilling fluids and cement formulation and testing. A rig-floor simulator is used to demonstrate drilling operations and control.
Prerequisite: CHEM 101, PETE 201

PETE 204 Reservoir Rock Properties (2-3-3)
Basic petrophysical properties of reservoir rocks are covered including porosity, permeability, fluid saturation, electrical conductivity, capillary pressure, and relative permeability. Applications of Darcy’s law to flow in porous media are also presented. Laboratory experiments illustrate measurement of various rock properties.

PETE 205 Petroleum Fluid Properties (2-3-3)
The phase behavior of hydrocarbon systems as related to petroleum recovery is introduced. This includes ideal and real gas behavior, single and multi-component two-phase systems, and properties of reservoir fluids under various conditions of pressure and temperature. Laboratory tests include determination of various properties of oil and gas mixtures.
Prerequisite: ME 203

PETE 301 Reservoir Engineering (3-0-3)
The course covers the general material balance equation and its application to determine initial oil and gas in place. Various steady and unsteady-state water influx models are presented along with concepts of fractional flow and the theory of immiscible displacement. The theory is then extended to two-dimensional systems whereby the effects of areal and vertical sweep efficiencies on waterflood performance predictions are highlighted.
Prerequisite: PETE 204, PETE 205

PETE 302 Well Completion (3-0-3)
The student is introduced to subsurface operations needed to prepare the well for production after being drilled and cased. Parts covered include:-well completion designs based upon reservoir, mechanical and economic considerations, the production system, comprising bottom-hole, tubing, choke and surface facilities, subsurface production control, completion and work-over fluids, perforation, remedial cementing, sand control, and well stimulation operations.
Prerequisite: PETE 203
PETE 303 Well Logging (3-3-4)
The course introduces the student to modern well logging techniques and covers both open-hole and cased-hole log interpretation methods. The objective is to provide insight into the basic well logging methods that are employed to derive petrophysical properties for hydrocarbon exploration and production. Discussions also touch on production logging. Concepts of logging program design are presented with examples of applications. All concepts covered are demonstrated through laboratory experiments.
Prerequisite: EE 204, PETE 204

PETE 304 Drilling Engineering II (3-0-3)
The course presents an overview of drilling engineering with in-depth treatment of casing, rotary drilling bit, drill string and bottom-hole assembly design/evaluation. The student also gains good understanding of the factors affecting the rate of penetration. Various drilling techniques such as horizontal and directional drilling, coiled tubing, multi-lateral drilling, and wellbore surveying techniques are also introduced in addition to well design for safety and efficiency. Other topics include drilling costs and economics and recent advances in drilling engineering.
Prerequisite: CE 202, PETE 203

PETE 305 Reservoir Description (3-0-3)
The principles and techniques of petroleum reservoir description are covered through utilization of subsurface data from geological and engineering sources. Univariate and bivariate description methods are used along with other techniques to estimate reserves.
Prerequisite: PETE 303, STAT 319

PETE 306 Well Testing (3-0-3)
Basic theory and modern practices and applications of well testing are covered. This includes derivation of diffusivity equation and its solutions for slightly compressible fluids within infinite- and finite-acting systems. The student is then introduced to the principles and techniques of well test analysis and evaluation supported by analysis of well tests from vertical and horizontal wells to determine well and reservoir parameters using conventional and modern well test analysis. Well test design and instrumentation are also covered.
Prerequisite: PETE 301

PETE 399 Summer Training (0-0-0)
A student of junior standing spends a period of eight summer weeks working in the industry to gain exposure to and appreciation of the petroleum engineering profession. On-the-job training can be acquired in any field of petroleum engineering. On completion of the training, the student is required to write a brief report on his work.
Prerequisite: ENGL 214, PETE 203, Completion of a minimum of 85 credit hours.

PETE 402 Reservoir Simulation (2-3-3)
The course introduces the student to the basic theory and practices in reservoir simulation. The formulation of equations governing single phase and multi-phase flow in porous media are discussed. The use of finite difference methods to solve ordinary and partial differential equations are then presented followed by discussion of various techniques to solve systems of linear equations. Finally the concepts presented are demonstrated through applications using a black oil simulator.
Prerequisite: PETE 301, PETE 305
PETE 403 Petroleum Production Engineering (3-0-3)
The course introduces the student to topics of inflow and outflow performance, multi-phase
flow in pipes, nodal analysis and production optimization and artificial lift with stress on
electric submersible pumps and gas lift systems. Oil and water treatment and separation
processes are introduced. Theoretical background calculations as well as design and economic
applications are covered in sufficient details.
Prerequisite: CHE 204

PETE 406 Improved Oil Recovery (3-0-3)
The course provides an introduction to current techniques of improved oil recovery such as
thermal processes, chemical flooding and miscible-gas displacement. The advantages and
drawbacks of each technique are discussed and linked to typical selection criteria for target
reservoirs. A simple performance prediction procedure for each process is also covered.
Prerequisite: PETE 301

PETE 407 Petroleum Economics (3-0-3)
The course provides an introduction to the standards and practices of economic analysis in the
petroleum industry. Brief review of the principles of economic evaluation, typical decision
making situations including risk analysis, alternative reservoir depletion schemes utilizing
decline curve analysis, secondary stage development options, and various improved oil
recovery methods. Analysis involves reserve estimation and forecasting of capital investment,
operating cost, and manpower requirement.
Prerequisite: PETE 301

PETE 408 Seminar (0-2-1)
Lectures are presented on subjects related to preparation of technical presentations, use of
visual aids, and platform and vocal techniques. The student is required to prepare and deliver
a number of presentations on selected subjects. Each presentation is discussed and methods
for improvements are highlighted. The student is evaluated on all presentations. The student is
also required to attend Departmental and SPE local chapter seminars.
Prerequisite: PETE 399

PETE 409 Artificial Lift (3-0-3)
Artificial lift methods in oil wells are studied from the basic theoretical and design aspects.
Methods include gas lift, electric submersible pumping, and sucker-rod pumping systems.
Principles of multi-phase flow are integrated with system performance and coupled with in
flow performance to predict overall well performance.
Prerequisite: PETE 302

PETE 410 Natural Gas Engineering (3-0-3)
The course familiarizes the student with methods to estimate gas reserves for volumetric and
water-drive gas reservoirs, and with performance analysis of gas-condensate reservoirs. The
course also covers the derivation of the basic flow equations for real gas and their solutions
and applications for analyzing gas well testing, including hydraulically-fractured gas wells.
Other topics include deliverability testing of gas wells, decline curve analysis, calculation of
static and flowing bottomhole pressures, fundamentals of gas treatment processes and
equipment, gas flow rate measurement, compression and transmission. The course also covers
field development plans through integration of gas material balance equation and field
deliverability tests.
Prerequisite: PETE 306
PETE 411 Senior Design Project (0-9-3)
A student team employs experimental and/or theoretical approaches with possible application of computer techniques to integrate various components of the curriculum in a comprehensive engineering design experience. Under the supervision of a faculty member, the team develops a complete project including identification of a problem, formulation of design, preparation of specifications, and consideration of alternative feasible solutions both technically and economically. The student team has to submit a detailed final project report and present their work to an examining committee.
Prerequisite: GEOL 318, PETE 402

PETE 412 Formation Damage (3-0-3)
The course covers methods of diagnosis, prevention and treatment of formation damage in petroleum reservoirs. Mechanism of damage from various sources such as scale and asphaltene precipitation, mud solids, cement filtrates and completion fluids is presented. Techniques used to diagnose damage and remediate its effects are emphasized.
Prerequisite: PETE 302

PETE 417 Surface Facilities (3-0-3)
Operation and design of oil, gas and water surface handling and processing facilities are presented. Topics include gas/oil separation, oil sweetening and de-emulsification, produced water treatment, and gas treatment. Laboratory demonstrations cover design principles and operations of facilities.
Prerequisite: CHE 204

PETE 418 Modern Petroleum Production (3-0-3)
The course covers advanced treatment of modern petroleum production engineering. This encompasses deliverability from vertical, horizontal and multilateral/multi-branch wells. Diagnosis of well performance including elements of well testing and production logging are also covered. The function of the production engineer is defined in the context of well design, stimulation and artificial lift.
Prerequisite: PETE 403

PETE 421 Directional Drilling (3-0-3)
Directional drilling design including horizontal and multi-lateral wells is covered along with the theory of deviation, monitoring and control. Offshore drilling techniques from fixed and floating drilling structures are also presented.
Prerequisite: PETE 304

PETE 422 Well Control (3-0-3)
Theory of pressure control in drilling operations and during well kicks is covered. Topics include abnormal pressure detection, fracture gradient determination, casing setting depth selection and advanced casing design. Theoretical aspects are demonstrated using well control simulators.
Prerequisite: PETE 304

PETE 424 Rock Mechanics (3-0-3)
The student is introduced to rock mechanics as an essential tool in petroleum engineering. Topics include mechanical properties of rocks and their laboratory determination; acoustics in rock mechanics; in-situ stress conditions and their determination; failure of rocks; stresses in
boreholes and borehole failure mechanisms; and sand production. A brief introduction to hydraulic fracturing, reservoir compaction and surface subsidence is also provided.

Prerequisite: PETE 304

PETE 431 Reservoir Management (3-0-3)
Techniques that utilize geological, geophysical and petroleum engineering data to predict and manage the behavior of hydrocarbon reservoirs are introduced. Field operating plans to optimize profitability are covered through highlighting the principles of planning, implementing, monitoring, and evaluating reservoir performance. Real case studies constitute an integral part of the course.

Prerequisite: PETE 301

PETE 432 Water Flooding (3-0-3)
Basic theoretical and design aspects of water flooding processes are introduced. The course starts with a review of capillary phenomena and relative permeability characteristics of reservoir rocks. Theory of immiscible displacement including piston-like and frontal advance mechanisms is then presented and applied to injectivity analysis and performance prediction of linear and pattern floods including heterogeneous reservoirs. Problems encountered in water flooding projects such as scaling are also covered.

Prerequisite: PETE 301

PETE 452 Naturally-Fractured Reservoirs (3-0-3)
The course covers different aspects of fractured reservoirs including rock characteristics, effect of fractures on reservoir performance, pressure testing, production performance, and effect on water and/or gas flooding. Applications to horizontal/multi-lateral wells are presented.

Prerequisite: PETE 306

PETE 453 Production Logging (3-0-3)
The course aims to develop the student's skills to identify undesired changes in well performance and to propose suitable solutions. The course covers production logging techniques and tools (Flowmeter, Gradiomanometer, cement evaluation, noise & temperature) and cased-hole logging techniques and tools (thermal decay time, reservoir saturation, formation resistivity). Field examples in vertical and horizontal wells are discussed.

Prerequisite: PETE 303

PETE 490 Special Topics in Petroleum Engineering I (3-0-3)
The course presents a special topic in one area of the petroleum engineering discipline. Topics are selected according to faculty expertise and availability and students’ interest and enrollment. A detailed description and syllabus of the course is announced one semester in advance.

Prerequisite: Senior Standing

PETE 491 Special Topics in Petroleum Engineering II (3-0-3)
The course presents a special topic in one area of the petroleum engineering discipline. Topics are selected according to faculty expertise and availability and students’ interest and enrollment. A detailed description and syllabus of the course is announced one semester in advance.

Prerequisite: Senior Standing
PHYSICS

PHYS 101 General Physics I (3-3-4)
First course of calculus-based, general physics sequence. Topics covered include: particle kinematics and dynamics; conservation of energy and linear momentum; rotational kinematics; rigid body dynamics; conservation of angular momentum; simple harmonic motion; gravitation; the static and dynamics of fluids.
Corequisite: MATH 101

PHYS 102 General Physics II (3-3-4)
A continuation of PHYS 101. Topics covered include: wave motion and sound; temperature, first and second law of thermodynamics; kinetic theory of gases; coulomb’s law; the electric field; Gauss’ law; electric potential; capacitors and dielectrics; D.C. circuits; the magnetic field; ampere’s and Faraday’s laws.
Prerequisite: PHYS 101
Corequisite: MATH 102

PHYS 133 Principles of Physics (3-3-4)
This is a non-calculus based physics course. Topics include: Particle kinematics and dynamics, work, energy, and power. Kinetic theory of gases. Temperature, first and second laws of thermodynamics. Heat transfer. Wave motion and sound. Electricity and magnetism. Light and optics.

PHYS 201 General Physics III (3-3-4)
A continuation of PHYS 101 and 102. Topics covered include: inductance; magnetic properties of matter, electromagnetic oscillations and waves; geometrical and physical optics. Relativity, introduction to quantum physics, atomic and molecular physics, nuclear physics, particle physics and cosmology.
Note: For non-Physics Majors
Prerequisite: PHYS 102, MATH 102

PHYS 203 Electrical and Magnetic Properties of Materials (3-0-3)
The course material includes the following topics: Concepts of Modern Physics: photons, electronic structure of isolated atoms; atoms bonding, crystal structure, energy bands in solids, insulators, semiconductors and conductors; electrons and holes in semiconductors, drift and diffusion, mobility, recombination and lifetime, conductivity; PN junctions, I (V) characteristic, applications; photo detectors, Light emitting diodes, Solar-cell, Bipolar transistor, MOSFET and JFET, Lasers, Magnetic Properties, Use of computer to simulate the effect of various physical properties of semiconductors on the I (V) characteristics of devices.
Prerequisite: PHYS 102

PHYS 211 Optics (2-3-3)
An introductory course in Geometrical and Physical Optics. Topics covered include: nature and propagation of light; image formation-paraxial approximation; optical instruments; superposition of waves; standing waves beats; fourier analysis of harmonic periodic waves and wavepackets; two-beam and multiple-beam interference; polarization; Fraunhofer and Fresnel diffraction; holography; lasers.
Prerequisite: PHYS 102
PHYS 212 Modern Physics (3-3-4)
Special relativity; quantum mechanics: the particle and wave aspects of matter; quantum mechanics in one and three dimensions, quantum theory of the hydrogen atom; atomic physics; statistical physics; selected topics in solid state physics; nuclear physics.
Note: Not to be taken for credit with PHYS 201
Prerequisite: PHYS 102

PHYS 215 Introduction to Astronomy (3-0-3)
An elementary introduction to astronomy. Topics covered include: Celestial mechanics; the solar system; stellar measurement; stellar magnitudes and spectra; galaxies; cosmology.
Prerequisite: PHYS 102

PHYS 234 The Physics of How Things Work (3-0-3)
The underlining physical principals of how everyday devices and systems work. Examples include: transistors, radios, lasers, medical imaging, nuclear power plants, atomic clocks, cars and computers.
Prerequisite: PHYS 102

PHYS 261 Energy (3-0-3)
A survey of energy sources and resources; a quantitative evaluation of energy technologies; the production, transportation, and consumption of energy. Topics covered include: Nuclear energy; fossil fuels; solar energy; wind energy; hydropower; geothermal energy; MHD; energy storage and distribution; automotive transportation.
Prerequisite: PHYS 102

PHYS 271 Introduction to Special Relativity (3-0-3)
Topics covered include: Properties of space-time; the Lorentz transformation; paradoxes; four vector formulations of mechanics and electromagnetism.
Prerequisite: PHYS 102

PHYS 301 Classical Mechanics I (3-0-3)
Topics covered include: Newton's laws of motion and conservation theorems, oscillations; non-linear oscillations and chaos; Computational study of forced oscillatory motion and nonlinear motion; gravitation; Hamilton’s variational principle – Lagrangian and Hamiltonian Dynamics; Central force; Motion in a non-inertial reference frame.
Prerequisite: MATH 202, PHYS 101

PHYS 302 Classical Mechanics II (3-0-3)
Topics covered include: Planetary motion; dynamics of a system of particles; motion in a non-inertial reference frames; dynamics of rigid bodies; coupled oscillations; continuous systems; special theory of relativity; Computational study of coupled oscillatory motion and Euler’s equations.
Prerequisite: PHYS 301

PHYS 303 Experimental Physics I (2-3-3)
An introductory course in electronics and the methods of experimental physics. The physics of semi-conductors; junction transistor; amplifiers; feedback circuits; oscillators; nonlinear devices; digital electronics; digital logic; counters and registers; analog-to-digital converters. **Prerequisite:** PHYS 102

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 304</td>
<td>Experimental Physics II</td>
<td>(1-3-2)</td>
<td>PHYS 102</td>
</tr>
<tr>
<td></td>
<td>Method of experimental physics. Analysis of experimental data. Relationship between theory and experiment. Curve fitting processes; fundamental of the theory of statistics; evaluation of experimental data; estimation of errors. Selected experiments in physics will be performed in conjunction with lecture material. Prerequisite: PHYS 303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 305</td>
<td>Electricity and Magnetism I</td>
<td>(3-0-3)</td>
<td>PHYS 303</td>
</tr>
<tr>
<td></td>
<td>Introduction to classical electromagnetic theory based on vector calculus. Electrostatics; Laplace and Poisson’s equations; Dielectric media and magnetostatics fields in matter; Computer will be used to solve electromagnetic problems. Prerequisite: PHYS 102, MATH 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 306</td>
<td>Electricity and Magnetism II</td>
<td>(3-0-3)</td>
<td>PHYS 305</td>
</tr>
<tr>
<td></td>
<td>A continuation of Physics 305. Topics covered include electrodynamics; electromagnetic waves; electromagnetic radiation and relativity. Prerequisite: PHYS 305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 307</td>
<td>Laser Molecular Spectroscopy</td>
<td>(3-0-3)</td>
<td>PHYS 305</td>
</tr>
<tr>
<td></td>
<td>Introduction to lasers; laser in time-resolved and in frequency-resolved spectroscopy; basic elements of spectroscopy; rotational, vibrational, and electronic spectroscopy. Prerequisite: PHYS 212 or PHYS 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 315</td>
<td>Astrophysics</td>
<td>(3-0-3)</td>
<td>PHYS 212 or PHYS 201</td>
</tr>
<tr>
<td></td>
<td>Basic methods of obtaining information about stars: stellar positions, size, luminosity, spectra. Methods of deducing stellar parameters from those observations. Newtonian gravitation, spectral analysis, Doppler shift, interaction of matter and radiation. Modeling the structure of stars. Pulsating stars, novae and supernovae. Collapsed stars (white dwarfs, neutron stars, and black holes). Stellar systems and clusters, Galaxies, systems of galaxies, filament and voids. Prerequisite: PHYS 212 or PHYS 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 323</td>
<td>Physics of Nuclear Reactors</td>
<td>(3-0-3)</td>
<td>PHYS 212 or PHYS 201, MATH 202</td>
</tr>
<tr>
<td></td>
<td>Nuclear reactions and fission; the multiplication factor and nuclear reactor criticality; homogeneous and heterogeneous reactors; the one-speed diffusion theory; reactor kinetics; multi group diffusion theory; Computer will be used in simple criticality calculations and reactor kinetics. Prerequisite: PHYS 212 or PHYS 201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 353</td>
<td>Radiation and Health Physics</td>
<td>(3-3-4)</td>
<td>PHYS 212 or PHYS 201</td>
</tr>
<tr>
<td></td>
<td>A survey course in safety from ionizing radiation. Topics covered include: properties of ionizing radiation; interaction of radiation with matter, detection methods, dosimetry, biological effects of radiation, external and internal radiation protection. Prerequisite: PHYS 212 or PHYS 201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHYS 365 Introduction to Medical Physics (3-0-3)
Topics: biomechanics, sound and hearing, pressure and motion of fluids, heat and
temperature, electricity and magnetism in the body, optics and the eye, biological effects of
light, use of ionizing radiation in diagnosis and therapy, radiation safety, medical
instrumentation.
Prerequisite: PHYS 201 or PHYS 212

PHYS 371 Methods of Theoretical Physics (3-0-3)
A one-semester course of mathematical topics chosen because of their importance and
usefulness to physics. Topics covered may include functions of a complex variable; contour
integration; partial differential equations; special functions; numerical techniques.
Note: Not to be taken for credit with MATH 301
Prerequisite: MATH 202

PHYS 373 Introduction to Computational Physics (2-3-3)
Computer simulation of physical systems. Topics covered include: simulation techniques;
programming methods; comparison of ideal and realistic systems; limitations of physical
theory; behavior of physical systems.
Note: Not to be taken for credit with MATH 321 or CISE 301
Prerequisite: PHYS 212, ICS 101 or ICS 102 or ICS 103

PHYS 399 Summer Training (0-0-2)
Students are required to spend one summer working in industry prior to the term in which
they expect to graduate. They will be required to write a report and present it in a seminar at
the Department.
Prerequisite: ENGL 214, Junior Standing, Approval of the Department

PHYS 401 Quantum Mechanics and Applications I (3-0-3)
This course deals with the fundamentals of non-relativistic quantum mechanics. Failures of
classical physics in describing microscopic phenomena. Mathematical tools and basic
postulates of Quantum Mechanics. Matrix formulation of Quantum Mechanics. The
Schrödinger equation and its application to various one-dimensional systems. Orbital angular
momentum. Applications of Quantum Mechanics to the study of three-dimensional systems.
Wavefunctions for some of the above systems and related expectation values obtained via
computer packages.
Prerequisite: PHYS 301

PHYS 402 Quantum Mechanics and Applications II (3-0-3)
This course is continuation of Physics 401. Addition of angular momenta. Time-independent
perturbation theory. The variational method and its applications. Schrödinger, Heisenberg and
Interaction pictures. Time-dependent perturbation theory. Scattering Theory. Identical
particles systems. Approximate solutions of several Schrödinger equations obtained via
computer packages.
Prerequisite: PHYS 401

PHYS 403 Senior Physics Laboratory (0-6-2)
A number of experiments selected both for their importance in the historical development of
physics and their educational value in presenting the techniques used in experimental physics
correlation of the experimental work with theory are stressed.
Prerequisite: PHYS 304
PHYS 404 Physics Project Laboratory (0-6-2)
A laboratory course, which offers an opportunity for students to carry out experimental projects, based on their special interests and ideas to study physical phenomena. Faculty help students to determine the feasibility of proposed projects.
Prerequisite: Senior Standing

PHYS 409 Physics Seminar (1-0-1)
Students are given the opportunity to present and attend lectures on topics of current research interest.
Prerequisite: Senior standing

PHYS 411 Advanced Optics (3-0-3)
An advanced study of Physical Optics. Topics covered are: Fourier transforms and applications, theory of coherence, interference spectroscopy, auto correlation function, fluctuations, optical transfer functions, diffraction and Gaussian beams, Kirchhoff diffraction theory, theory of image formation, spatial filtering, aberrations in optical images, interaction of light with matter, crystal optics, nonlinear optics, lasers.
Prerequisite: PHYS 211, PHYS 306

PHYS 412 Physics of Lasers (3-0-3)
Topics covered are: Stimulated emission and coherence; population inversion; Gaussian beam propagation; optical resonators and cavity modes; stability criteria; unstable resonators; phase conjugate resonators; oscillation threshold and gain; line broadening; gain saturation; density matrix formulation and semi-classical theory of laser; lasers without inversion; Q-switching, mode-locking and pulse compression.
Prerequisite: PHYS 211, PHYS 212

PHYS 416 Cosmology and the Early Universe (3-0-3)
Prerequisite: PHYS 212 or PHYS 201, Math 202

PHYS 422 Nuclear and Particle Physics (3-0-3)
Study of Nuclear and Particle Physics with the help of Quantum Mechanics. Topics covered include: nuclear properties, forces between nucleons, nuclear models, radioactive decays and detectors, nuclear reactions, accelerators. Fundamental particles, forces, the subnuclear zoo. Two-body bound and scattering problems, nuclear forces, models, etc. studied both analytically and via computer packages.
Prerequisite: PHYS 401

PHYS 430 Thermal and Statistical Physics (4-0-4)
Statistical physics, developing both thermodynamics and statistical mechanics simultaneously. Concepts of temperature, laws of thermodynamics, entropy, thermodynamic relations, free energy. Applications to phase equilibrium, multicomponent systems, chemical reactions, and
thermodynamic cycles. Application of statistical mechanics to physical systems; introduction to treatment of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics with applications. Computational aspects of free-energy entropy magnetization for various classical and quantum distributions.

Corequisite: PHYS 401

PHYS 432
Introduction to Solid State Physics
(3-0-3)
Introductory concepts in crystal diffraction and the reciprocal lattice. Crystal bonding; lattice vibrations; thermal properties of insulators; free electron theory of metals; band theory; semiconductors, introduction to superconductivity. Simple band structure calculations using computer software packages.

Prerequisite: PHYS 401

PHYS 434
Introduction to the Physics of Surface
(3-0-3)
A course may be offered in conjunction with current research at the Surface Science Laboratory. Topics covered include: preparation of clean surfaces; experimental methods such as XPS, UPS, Auger, and LEED; thin films; surface states; temperature effects.

Corequisite: PHYS 432

PHYS 435
Superconductivity
(3-0-3)
Experiment and phenomenology, the two fluid model. Perfect conductance and electrodynamics of superconductors. Thermodynamics of the phase transition, type I and type II superconductors. Ginzburg Landau phenomenological theory of type II superconductors: coherence length, vortices, Abrikosov vortex lattice, critical fields and vortex flow dynamics. The microscopic theory of BCS and the concept of electron pairing. High T_c superconductivity.

Prerequisite: PHYS 401

PHYS 441
Particle Physics
(3-0-3)
Topics covered include: accelerators and detectors; the subnuclear zoo; symmetries and conservation laws; the quark model; the gauge principle.

Prerequisite: PHYS 401

PHYS 442
Relativistic Quantum Mechanics
(3-0-3)
Topics covered include: relativistic spin zero particle; the Klein-Gordon equation; relativistic spin one-half particles; the Dirac equation; propagation theory.

Corequisite: PHYS 402

PHYS 461
Introduction to Plasma Physics
(3-0-3)
An introduction to plasmas. Topics covered include: single-particle motions; plasmas as fluids; waves in plasmas; diffusion and resistivity; equilibrium and stability; a simple introduction to kinetic theory; nonlinear effects; controlled fusion.

Prerequisite: PHYS 306

PHYS 493
Selected Topics in Physics
(1 to 3)
Selected topics of special interest to students. This course may be repeated for credit as an investigation in depth of a single topic or as a survey of several topics.

Prerequisite: Consent of the Instructor

PHYS 495
Guided Studies
(1-0-1)
Guided reading and reporting on special topics by individual students under the guidance of faculty members.

Prerequisite: Consent of the Instructor
PREPARATORY YEAR PROGRAM

PYP 001 Preparatory Physical Science (2-0-2)
Introduction to physical Science, measurements, motion, Newton's Laws, momentum and energy, wave motion, the atom, elements and compounds, states of matter, the Periodic Table.

PYP 002 Preparatory Computer Science (0-2-1)
Introduction to computer systems components. Windows operating systems and its utilities. Hands-on exposure to applications software. Introduction to Internet tools and technologies.

PYP 003 University Study Skills (0-2-1)
The course will cover some of the key skills needed by college students including: goal-setting, motivation, time and stress management, classroom skills, preparing for exams, and analytical/critical thinking.

PYP 004 Preparatory Engineering Technology (0-2-1)
An introduction to various engineering disciplines. Topics include: Graphical Design, Pneumatics, Automotive Engineering, Measurement Tools and Sensors. Students work in groups to turn a simple design created through “SolidWorks” into a real model using CNC machines. Introduction to Robotics.
STATISTICS

STAT 201 Introduction to Statistics (2-2-3)

Note: Not to be taken for credit with Stat 319 or ISE 205

Prerequisite: MATH 102

STAT 211 Statistics for Business I (3-0-3)
Data description: Frequency table, histogram, measures of central tendency, scatter diagram and correlation. Probability theory; sampling; probability distributions; point and confidence interval estimation; application for managerial decision. A statistical package will be used.

Note: Not open for credit to Statistics or Mathematics Majors. Not to be taken for credit with ISE 205, STAT 201 and STAT 319.

Prerequisite: MATH 131, MATH 132

STAT 212 Statistics for Business II (3-0-3)
Hypothesis testing for means and variances; index numbers and time series; simple linear progression and correlation analysis; multiple regression analysis; the chi-squared and F distributions and their applications. A statistical package will be used.

Note: Not open for credit to Statistics or Mathematics Majors. Not to be taken for credit with ISE 205, STAT 201 and STAT 319.

Prerequisite: STAT 211

STAT 213 Statistical Methods for Actuaries (2-2-3)
Descriptive Statistics: Frequency table; histogram, measure of central tendency and variability, scatter diagram and correlation. Probability theory; sampling techniques; probability distributions; estimation; hypothesis testing for means and variances; index number and introductory time series analyses; simple linear regression and correlation analysis; multiple regression analysis; the chi-squared and F distributions and their applications; application for financial decisions; application using statistical packages.

Note: Not to be taken for credit with STAT 201, STAT 211, STAT 212, or STAT 319.

Prerequisite: MATH 102

STAT 301 Introduction to Probability Theory (3-0-3)

Prerequisite: MATH 201, STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 302 Statistical Inference (3-0-3)
simple hypotheses, the Neyman-Pearson lemma. Testing composite hypotheses, uniformly most powerful and likelihood ratio tests. Bayesian statistics.

Prerequisite: STAT 301

STAT 310 Regression Analysis

Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 319 Probability and Statistics for Engineers and Scientist

Presentation and interpretation of data, elementary probability concepts, random variables and probability distributions, binomial, Poisson, exponential, Weibull, normal and lognormal random variables. Estimation, tests of hypotheses for the one sample problem. Simple and multiple linear regression, application to engineering problems. The lab session will be devoted to problem solving using statistics software.

Note: Not open for credit to Statistics or Mathematics Majors. Cannot be taken for credit with ISE 205 or STAT 201.

Prerequisite: MATH 102

STAT 320 Statistical Quality Control

Note: Not to be taken for credit with ISE 320

Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 325 Non Parametric Statistical Methods

Prerequisite: STAT 201 or Consent of the Instructor

STAT 342 Applied Statistics

Note: Not to be taken for credit with STAT 310 and/or STAT 430

Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 355 Demographic Methods

Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319
STAT 361 Operational Research I
Problem solving and decision making. Linear programming: formulation, the graphical method, the simplex method, sensitivity analysis, and duality. Transportation and assignment problem. Integer programming. Project scheduling PERT/CPM.
Note: Not to be taken for credit with ISE 303
Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 365 Data Collection and Sampling Methods
Concept of data collection. Sample surveys, finite and infinite populations, execution and analysis of samples. Basic sampling designs: simple, stratified, systematic, cluster, two-stage cluster. Methods of estimation of population means, proportions, totals, sizes, variances, standard errors, ratio, and regression.
Prerequisite: STAT 201 or consent of the instructor

STAT 375 Categorial Data Analysis
2x2 contingency tables, two-way contingency tables, three-way and higher dimensional contingency tables. Loglinear models for contingency tables. Logistic regression. Building and applying loglinear models.
Prerequisite: STAT 201 or STAT 212 or STAT 213 or STAT 319

STAT 399 Summer Training
Students are required to spend one summer working in industry prior to the term in which they expect to graduate. Students are required to submit a report and make a presentation on their summer training experience and the knowledge gained.
Prerequisite: ENGL 214, Junior Standing, Approval of the Department

STAT 415 Stochastic Processes
Prerequisite: STAT 301

STAT 416 Stochastic Processes for Actuaries
Basic classes of stochastic processes. Poisson (regular, compound, compound surplus, and non-homogenous) and renewal processes with applications in simple queuing systems and actuarial science. Discrete and continuous time Markov chains. Birth-death and Yule processes. Branching models of population growth processes. Actuarial risk models; simulation. Arithmetic and geometric Brownian motions, and applications of these processes such as in computation of resident fees for continuing care retirement communities, and pricing of financial instruments.
Note: Not to be taken for credit with STAT 415
Prerequisite: STAT 301

STAT 430 Experimental Design
Prerequisite: STAT 302

STAT 435 Linear Models
(3-0-3)

Prerequisite: STAT 310

STAT 440 Multivariate Analysis (3-0-3)

Prerequisite: STAT 310

STAT 460 Time Series (3-0-3)

Prerequisite: STAT 310

STAT 461 Operational Research II (3-0-3)

Note: Not to be taken for credit with ISE 421

Prerequisite: STAT 310, STAT 361

STAT 470 Senior Project in Statistics (1-3-2)
This course is designed to draw upon various components of the undergraduate curriculum. The project could be in the area of data analysis, sampling survey, experimental design, regression analysis, multivariate data analysis, time series and etc. A report is essential for course completion.

Prerequisite: Senior Standing

STAT 475 Statistical Models for Life time Data (3-0-3)
Life tables, graph and related procedures. Single samples: complete or Type II censored data and Type I censored data for exponential, Weibull, gamma and other distributions. Parametric regression for exponential, Weibull and gamma distributions. Distributions- free methods for proportional hazard and related regression models.

Prerequisite: STAT 302, STAT 310

STAT 499 Topics in Statistics (3-0-3)
Variable contents. Open for senior students interested in studying an advanced topic in statistics with a departmental faculty member.

Prerequisite: Senior standing, permission of the Department Chairman upon recommendation of the instructor.
SOFTWARE ENGINEERING

SWE 205 Introduction to Software Engineering (3-0-3)
Prerequisite: ICS 102

SWE 215 Software Requirements Engineering (2-3-3)
Requirements engineering process. Methods, tools and techniques for eliciting, organizing and documenting software requirements. Analysis and validation techniques, including need, goal, and use case analysis. Requirements documentation standards. Traceability. Requirements management. Handling requirements changes. Students participate in a group project on software requirements.
Prerequisite: ICS 201, SWE 205

SWE 311 Principles of Software Engineering (3-3-4)
Note: Not to be taken by SWE students
Prerequisite: ICS 202

SWE 312 User Interface Design (3-0-3)
Prerequisite: SWE 205

SWE 316 Software Design and Architecture (3-0-3)
Study of design concepts and notations. Architecture, middleware architectures, design patterns, frameworks and components. Designing for qualities such as performance, security, reusability, reliability. Metrics and measurement. Basics of software evolution, reengineering, and reverse engineering. Students participate in a group project on software design.
Prerequisite: ICS 202, SWE 215

SWE 321 Formal Methods and Models in Software Engineering (3-0-3)
Mathematical foundations for formal methods. Formal languages and techniques for specification and design, including specifying syntax using grammars and finite state machines. Analysis and verification of specifications and designs. Use of assertions and proofs. Automated program and design transformation.
Prerequisite: ICS 202, ICS 253

SWE 326 Software Testing and Quality Assurance (3-0-3)
Concept of software quality, and software quality metrics. Software quality assurance planning & implementation. Quality process standards. Validation & verification. Reviews, walkthroughs, &
inspections. Mechanisms for validating software systems. Techniques for generating and validating test data. Students participate in a group project on software validation and verification.

Prerequisite: SWE 215, SWE 312

SWE 344 Internet Protocols and Client-Server Programming (2-3-3)
Principles of inter-network architecture and communication protocols. Open systems and interoperability. Case studies of particular protocols from network layer and above. Socket programming. Remoting. Selected examples of networked client-server applications such as e-mail, news, file-transfer, HTTP. Client-Server Programming Project(s). Using APIs. Software tools and environments.

Prerequisite: ICS 202

SWE 363 Web Engineering and Development (3-0-3)
Web Engineering fundamentals: requirements, analysis modeling, design modeling, testing, Internet basics for web applications. Technologies and tools for developing web applications: markup languages, styling, data description and transformation, client and server side programming. Web services. Advances in web engineering.

Prerequisite: Junior Standing

SWE 387 Software Project Management (3-0-3)
Introduction project management concepts, tools, and techniques: integration management and project planning, scope management, scheduling, budget control, human resource management, communication management, risk analysis and management, project quality management, and procurement management.

Prerequisite: Junior Standing

SWE 399 Summer Training (0-0-0)
A summer period of 8 weeks spent as a trainee in industry, business, or government agencies for the purpose of familiarizing the student with the real job world and enabling him to apply and relate his academic knowledge to a real work environment. The student is required to participate in computer science related activities and use his time to get acquainted with the computer science related functions and resources used by his employing organization. Besides progress reports, the student is required to submit a final report and do a presentation on his experience and the knowledge he gained during his summer training program. The student receives a zero-credit Pass/Fail grade.

Prerequisite: SWE 363, ENGL 214, Department Approval

SWE 416 Software Architecture (3-0-3)
Study the concepts, principles, methods, and best practices in software architecture. Different architectural styles, patterns and product lines are presented and compared. Methods to analyze, evaluate and document software architectures are also discussed. Students participate in a group project on software architecture design.

Prerequisite: SWE 316

SWE 417 Software Engineering Project I (1-6-3)
This is the first part of a two-semester senior-year capstone project. Student teams employ knowledge gained from courses throughout the program such as development of requirements, design, implementation, and quality assurance to develop a software solution to a real-world problem from conception to completion. In this part students develop project plan, software requirement specification and software design document.
Prerequisite: SWE 316, SWE 387

SWE 418 Software Engineering Project II (0-6-2)
This is the second part of a two-semester, senior-year capstone project. Student teams employ knowledge gained from courses throughout the program such as development of requirements, design, implementation, and quality assurance to develop a software solution to a real-world problem from conception to completion. In this part, students implement the design they produced in SWE 417, test their code, and evaluate their final product.
Prerequisite: SWE 326, SWE 417

SWE 436 Object-Oriented Design Patterns (3-0-3)
Prerequisite: SWE 316

SWE 469 Software Metrics (3-0-3)
Overview of software metrics, basics of measurement theory, goal-based framework for software measurement, empirical investigation in software engineering. Measuring internal product attributes, measuring external product attributes, measuring cost and effort, measuring software reliability, software test metrics, and object-oriented metrics.
Prerequisite: SWE 316, STAT 319

SWE 487 Software Processes and Process Improvements (3-0-3)
Prerequisite: SWE 326

SWE 490 Special Topics I (3-0-3)
In-depth study of a selected special topic relevant to software engineering
Prerequisite: Senior Standing

SWE 491 Special Topics II (3-0-3)
In-depth study of a selected special topic relevant to software engineering
Prerequisite: Senior Standing
UNIVERSITY BOARD AND ADMINISTRATION
UNIVERSITY BOARD

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.E. Azzam ibn Muhammad Al-Dakhil</td>
<td>Minister of Education and Chairman of the University Board</td>
</tr>
<tr>
<td>H.E. Dr. Khalid S. Al-Sultan</td>
<td>Rector of the University and Deputy Chairman of the University Board</td>
</tr>
<tr>
<td>Dr. Mohammed Abdulaziz Al-Saleh</td>
<td>Secretary General of the Council of Higher Education</td>
</tr>
<tr>
<td>Dr. Mohammad S. Al-Homoud</td>
<td>Vice Rector for Academic Affairs</td>
</tr>
<tr>
<td>Dr. Sahel N. Abduljauwad</td>
<td>Vice Rector for Applied Research</td>
</tr>
<tr>
<td>Dr. Omar A. Al-Suwailem</td>
<td>Dean of College of Engineering Sciences</td>
</tr>
<tr>
<td>Dr. Suliman S. Al-Homidan</td>
<td>Dean of College of Sciences</td>
</tr>
<tr>
<td>Dr. Mohammed F. Al-Zahrani</td>
<td>Dean of College of Industrial Management</td>
</tr>
<tr>
<td>Dr. Adel F. Ahmed</td>
<td>Dean of College of Computer Science & Engineering</td>
</tr>
<tr>
<td>Dr. Adel S. Al-Dosary</td>
<td>Dean of College of Environmental Design</td>
</tr>
<tr>
<td>Dr. Abdulaziz O. Al-Kaabi</td>
<td>Dean of College of Petroleum Engineering & Geosciences</td>
</tr>
<tr>
<td>Dr. Ismail M. Budaiwi</td>
<td>Dean of College of Applied and Supporting Studies</td>
</tr>
<tr>
<td>Dr. Salam A. Zummo</td>
<td>Dean of Graduate Studies</td>
</tr>
<tr>
<td>Dr. Nedal T. Ratrout</td>
<td>Dean of Academic Development</td>
</tr>
<tr>
<td>Dr. Saad M. Al-Shahrani</td>
<td>Dean of Admissions & Registration</td>
</tr>
<tr>
<td>Dr. Saeed M. Al-Amoudi</td>
<td>Dean of Faculty & Personnel Affairs and Acting Secretary of the University Board</td>
</tr>
<tr>
<td>Dr. Saleh A. Al-Baridi</td>
<td>Dean of Library Affairs</td>
</tr>
<tr>
<td>Dr. Dr. Nasser M. Al-Aqeeli</td>
<td>Dean of Scientific Research</td>
</tr>
<tr>
<td>Dr. Mesfer M. Al-Zahrani</td>
<td>Dean of Student Affairs</td>
</tr>
<tr>
<td>Dr. Omar S. Al-Amoudi</td>
<td>Dean of Educational Services</td>
</tr>
<tr>
<td>Dr. Abdulrahman A. Al-Arfaj</td>
<td>Dean of Dammam Community College</td>
</tr>
</tbody>
</table>
UNIVERSITY ADMINISTRATION

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Degree</th>
<th>Institution and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rector & Chief Executive Officer</td>
<td>Dr. Khalid S. Al-Sultan, Ph.D.</td>
<td>University of Michigan, Ann Arbor (1990)</td>
<td></td>
</tr>
<tr>
<td>Vice Rector for Academic Affairs</td>
<td>Dr. Mohammad S. Al-Homoud, Ph.D.</td>
<td>Texas A&M (1994)</td>
<td></td>
</tr>
<tr>
<td>Vice Rector for Applied Research</td>
<td>Dr. Sahel N. Abduljauwad, Ph.D.</td>
<td>University of Colorado, Boulder (1985)</td>
<td></td>
</tr>
<tr>
<td>General Supervisor, Services</td>
<td>Dr. Sami A. Khayyat, Ph.D.</td>
<td>Texas A&M (1994)</td>
<td></td>
</tr>
<tr>
<td>Supervisor, Dhahran Techno-Valley</td>
<td>Dr. Samir A. Al-Baiyat, Ph.D.</td>
<td>University of Notre Dame (1986)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Engineering Sciences</td>
<td>Dr. Omar A. Al-Suwailem, Ph.D.</td>
<td>University of Missouri, Columbia (1996)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Sciences</td>
<td>Dr. Suliman S. Al-Homidan, Ph.D.</td>
<td>University of Dundee (1993)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Industrial Management</td>
<td>Dr. Mohammed F. Al-Zahrani, Ph.D.</td>
<td>University of Oklahoma (2006)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Computer Sciences & Engineering</td>
<td>Dr. Adel F. Ahmed, Ph.D.</td>
<td>University of Sydney (2008)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Environmental Design</td>
<td>Dr. Adel S. Aldosary</td>
<td>University of Michigan, Ann Arbor (1991)</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Petroleum Engineering & Geosciences</td>
<td>Dr. Abdulaziz O. Al-Kaabi</td>
<td>Texas A&M</td>
<td></td>
</tr>
<tr>
<td>Dean, College of Applied & Supporting Studies</td>
<td>Dr. Ismail M. Budaiwi, Ph.D.</td>
<td>Colorado University (1994)</td>
<td></td>
</tr>
<tr>
<td>Dean of Graduate Studies</td>
<td>Dr. Salam A. Zummo, Ph.D.</td>
<td>University of Michigan, Ann Arbor (2003)</td>
<td></td>
</tr>
<tr>
<td>Dean of Academic Development</td>
<td>Dr. Nedal T. Ratrout</td>
<td>Michigan State University (1989)</td>
<td></td>
</tr>
<tr>
<td>Dean of Admissions & Registration</td>
<td>Dr. Omar A. Al-Suwailem, Ph.D.</td>
<td>University of Missouri, Columbia (1996)</td>
<td></td>
</tr>
<tr>
<td>Dean of Faculty and Personnel Affairs</td>
<td>Dr. Saeed M. Alamoudi, Ph.D.</td>
<td>University of Pittsburgh (1999)</td>
<td></td>
</tr>
<tr>
<td>Dean of Library Affairs</td>
<td>Dr. Saleh Al-Bardi, Ph.D.</td>
<td>Florida State University (1994)</td>
<td></td>
</tr>
<tr>
<td>Dean, Scientific Research</td>
<td>Dr. Nasser M. Al-Aqeeli, Ph.D.</td>
<td>McGill University (2000)</td>
<td></td>
</tr>
<tr>
<td>Dean of Student Affairs</td>
<td>Dr. Mesfer M. Al-Zahrani, Ph.D.</td>
<td>Pennsylvania State University (1995)</td>
<td></td>
</tr>
<tr>
<td>Dean of Educational Services</td>
<td>Dr. Omar S. Al-Amoudi, Ph.D.</td>
<td>KFUPM (1992)</td>
<td></td>
</tr>
<tr>
<td>Dean, Dammam Community College</td>
<td>Dr. Abdul Rahman A. Al-Arfaj, Ph.D.</td>
<td>University of Washington (1985)</td>
<td></td>
</tr>
</tbody>
</table>
UNIVERSITY FACULTY
ORDER OF EACH ENTRY

<table>
<thead>
<tr>
<th>Name</th>
<th>Highest Earned Degree and Year of Graduation</th>
<th>The University Granting the Degree</th>
<th>Academic Rank</th>
<th>Department and Year of Appointment at KFUPM</th>
</tr>
</thead>
</table>
Dr. Abbas, Nasir
Ph.D. (2012)
University of Amsterdam
Assistant Professor
Mathematics & Statistics Department (2014)

Dr. Abbasi, Saddam Akber
Ph.D. (2013)
University of Auckland
Assistant Professor
Mathematics & Statistics Department (2013)

Dr. Abdel-Aal, Radwan El-Said
Ph.D. (1983)
University of Strathclyde
Professor
Computer Engineering Department (1985)

Dr. Abd-El-Fattah, Ahmed Mohsen Sabry
Ph.D. (2011)
Kansas State University
Assistant Professor
Architecture Department (2012)

Dr. Abdelrahman, Wael Gamal Eldin Mohamed
Ph.D. (1999)
University of Cincinnati
Assistant Professor
Aerospace Engineering Department (2006)

Dr. Abdou, Adel Abdel- Moneim
Concordia University
Associate Professor
Architecture Engineering Department (1996)
Dr. Abdulghani, Waleed Mohammed Rashad
University of Manchester
Assistant Professor
Geosciences Department (1986)

Dr. Abduljauwad, Sahel N.
Ph.D. (1985)
University of Colorado, Boulder
Professor
Civil Engineering Department (1978)

Dr. Abdul-Jauwad, Samir Hussain Ibrahim
Ph.D. (1985)
University of Sheffield
Associate Professor
Electrical Engineering Department (1974)

Mr. Abdullah, Mohammad Yunus
Master (1984)
University of Essex
Lecturer
Preparatory English Program (1993)

Dr. Abdullatif, Osman Mahmoud
Ph.D. (1993)
University of Khartoum
Associate Professor
Geosciences Department (2001)

Dr. Abdulraheem, Abdulazeez
Ph.D. (1994)
University of Oklahoma
Associate Professor
Petroleum Engineering Department (1994)
Dr. Abido, Mohamed Ali Yousif
Ph.D. (1997)
King Fahd University of Petroleum & Minerals
Professor
Electrical Engineering Department (1992)

Dr. Abo-Ghander, Nabeel Salem
Ph.D. (2011)
University of British Columbia
Assistant Professor
Chemical Engineering Department (2000)

Dr. Abokhodair, Abdul-Wahab Bin Abdulaziz Bin
Ph.D. (1978)
University of California Santa Cruz
Associate Professor
Geosciences Department (1972)

Dr. Abouheaf, Mohammed
Ph.D. (2012)
University of Texas, Arlington
Assistant Professor
System Engineering Department (2013)

Dr. Abualhamayel, Habib Bin Ibrahim Bin Ahmed
Ph.D. (1981)
University of Colorado, Boulder
Professor
Mechanical Engineering Department (1973)

Dr. Al-Abdul Wahhab, Hamad I.
Ph.D. (1985)
Oregon State University
Professor
Civil Engineering Department (1979)

Dr. Abu-Al-Saud, Wajih Abdulelah
Georgia Institute of Technology
Assistant Professor
Electrical Engineering Department (1994)

Dr. Abu-Amara, Marwan Hassan
Texas A&M University
Associate Professor
Computer Engineering Department (2003)

Dr. Abu-Dheir, Numan Mohammad Khalil Zuhdi
Ph.D. (2005)
University of Kentucky
Assistant Professor
Mechanical Engineering Department (2006)

Dr. Abuelmaatti, Muhammad Taher
Ph.D. (1979)
University of Bradford
Professor
Electrical Engineering Department (1991)

Mr. Abu-Hilal, Hamed
Master (1987)
Michigan State University
Lecturer
Physical Education Department (2000)

Dr. Abuihlail, Jawad Younes
Ph.D. (2001)
Heinrich-Heine University
Professor
Mr. Abujiya, Mu'azu Ramat
Master (2003)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Math Program (2000)

Dr. Abu-Khamsin, Sidqi Ahmad M
Stanford University
Adjunct Professor
Petroleum Engineering Department (1975)

Dr. Abulkibash, Abdalla Mahmud Shihadeh
Ph.D. (1979)
University of Exeter
Professor
Chemistry Department (1980)

Dr. Abu-Sbeih, Mohamed Zuheir Ibrahim
Ph.D. (1983)
Pennsylvania State University
Associate Professor

Mr. AbuShosha, Mohammed Ahmed
Master (2013)
King Fahd University of Petroleum & Minerals
Lecturer
Mathematics & Statistics Department (2010)

Dr. Abussaud, Basim Ahmed Ali
Ph.D. (2007)
Mcgill University
Assistant Professor
Chemical Engineering Department (1995)
Mr. Adejumo, Adewale Olumide
Master (1985)
Reading University
Lecturer
Physical Education Department (1993)

Mr. Adiche, Hakim Salah Mohamed
Master (1997)
King Fahd University of Petroleum & Minerals
Lecturer
Computer Engineering Department (1998)

Dr. Afzal, Hafiz Muhammad
Ph.D. (1999)
University of Punjab
Lecturer
Islamic & Arabic Studies Department (1995)

Dr. Aghdam, Reza Fathollahzadeh
Ph.D. (2007)
University of Technology, Sydney
Assistant Professor
Finance & Economics Department (2007)

Dr. Ahmad, Shamshad
Ph.D. (1991)
Indian Institute of Technology, Delhi India
Associate Professor
Civil Engineering Department (2001)

Dr. Ahmad, Izhar Mohammad Gufran
Ph.D. (1997)
Indian Institute of Technology
Associate Professor
Mathematics & Statistics Department (2008)
Mr. Ahmad, Irfan
Master (2008)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (2008)

Dr. Ahmad, Irshad
Ph.D. (2011)
Korea Advanced Institute of Science & Technology
Assistant Professor
Biology Department (2014)

Mr. Ahmed, Mustafa Faisal
MBA (1997)
Chadron State College
Lecturer
Accounting & MIS Department (2000)

Dr. Ahmed, Chokri Salah Abdallah Belhaj
Ph.D. (1996)
University of Montreal
Assistant Professor
Electrical Engineering Department (1991)

Dr. Ahmed, Moataz Aly Kamaleldin
Ph.D. (1997)
George Mason University
Associate Professor
Information & Computer Science Department (2010)

Mr. Ahmed, Akram Mohamed Musa
Master (1989)
Yarmouk University
Lecturer
Preparatory Math Program (1995)
Mr. Ahmed, Mohammad Bilal
Master (2007)
University of Huddersfield
Lecturer
Preparatory Science & Engineering Program (2011)

Dr. Ahmed, Adel Fadhl Noor
Ph.D. (2008)
University of Sydney
Assistant Professor
Information & Computer Science Department (1996)

Mr. Ahmed, Syed Naveed
Master (1999)
Osmania University
Lecturer
Aerospace Engineering Department (2009)

Dr. Ahmed, Mirghani Nimir
Ph.D. (1992)
University of Manchester
Assistant Professor
Accounting & MIS Department (1998)

Mr. Ahmed, Mohiuddin Nehaluddin
Master (1984)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1988)

Dr. Aiban, Saad A.
Ph.D. (1991)
University of Colorado, Boulder
Professor
Civil Engineering Department (1982)
Dr. Akhtar, Syed Sohail
Ph.D. (2008)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2009)

Mr. Al-Abandi, Hasan Habib Abdullah
Master (1981)
King Fahd University of Petroleum & Minerals
Lecturer
Finance & Economics Department (1979)

Dr. Alabri, Khalid Hassan
Ph.D. (2000)
Al-Imam Mohammed Bin Saud Islamic University
Associate Professor
Islamic & Arabic Studies Department (2004)

Dr. Al-Absi, Munir Ahmed Abdo
Ph.D. (2001)
University of Manchester
Associate Professor
Electrical Engineering Department (2000)

Dr. Al-Adel, Fida Fouad
Ph.D. (1981)
University of Paris
Professor
Physics Department (1982)

Dr. Alahmadi, Saad Mohammed A.
Ph.D. (2010)
Carleton University
Assistant Professor
Electrical Engineering Department (2003)
Dr. Al-Ahmadi, Hasan M.
Ph.D. (1990)
Michigan State University
Associate Professor
Civil Engineering Department (1982)

Dr. Al-Ahmadi, Mohammad Saad
Oklahoma State University
Assistant Professor
Accounting & MIS Department (1998)

Dr. Al-Ahmari, Abdallah Said Muhammad
Georgia Institute of Technology
Assistant Professor
Electrical Engineering Department (1991)

Mr. Alaimia, Mohamed Ridha
Master (1989)
Lancaster University
Lecturer
Preparatory Math Program (1999)

Dr. Al-Aithan, Thamer Abdulmohsen
Ph.D. (1997)
Syracuse University
Assistant Professor
Physics Department (1985)

Dr. Al-Akhdar, Zaki Haidar H
Ph.D. (1989)
University of Colorado, Boulder
Assistant Professor
Electrical Engineering Department (1982)
Dr. Al-Ali, Habib Husain A
Ph.D. (1988)
Colorado School of Mines
Associate Professor
Chemical Engineering Department (1980)

Dr. Al-Ameer, Abdlhameed Bin Abdullah
Ph.D. (1992)
Florida State University
Associate Professor
Physical Education Department (2005)

Dr. Al-Amer, Samir Hasan Husain
Ph.D. (1999)
King Fahd University of Petroleum & Minerals
Assistant Professor
System Engineering Department (1984)

Dr. Al-Amer, Adnan M
Ph.D. (1983)
University of British Columbia
Professor
Chemical Engineering Department (1976)

Dr. Al-Amoudi, Omar S. B.
Ph.D. (1992)
King Fahd University of Petroleum & Minerals
Professor
Civil Engineering Department (1982)

Dr. Al-Amoudi, Saeed Mohammed Saeed
Ph.D. (1999)
University of Pittsburgh
Assistant Professor
Physics Department (1991)
Dr. Alamri, Saeed Ali Mohammed
Ph.D. (2005)
Um Al-Qura University
Assistant Professor
Islamic & Arabic Studies Department (1997)

Dr. Al-Aqeeli, Nasir Mohammed
Ph.D. (2000)
Mcgill University
Associate Professor
Mechanical Engineering Department (2000)

Dr. Al-Arfaj, Abdulrahman Ahmad Abdulrahman
Ph.D. (1985)
University of Washington
Professor
Chemistry Department (1978)

Dr. Al-Ashban, Aref Abdulla
University of Houston
Assistant Professor
Management & Marketing Department (1989)

Mr. Al-Asiri, Hassan Saeed
Bachelor (2006)
King Fahd University of Petroleum & Minerals
Lecturer
Chemical Engineering Department (2009)

Dr. Alassaf, Abdulaziz Muhammad Jaser
Northeastern University
Assistant Professor
Mathematics & Statistics Department (1991)
Dr. Al-Assaf, Abdulla Khalaf
Ph.D. (1989)
Halab University
Assistant Professor
Islamic & Arabic Studies Department (1996)

Dr. Alassar, Rajai Samih Mousa
Ph.D. (1996)
King Fahd University of Petroleum & Minerals
Professor
Mathematics & Statistics Department (1997)

Dr. Al-Athel, Khaled Saleh
Ph.D. (2010)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2003)

Dr. Al-Attas, Omar G.
Ph.D. (2012)
University of Ottawa
Assistant Professor
Civil Engineering Department (2000)

Dr. Al-Attas, Husain Salem
University of Pittsburgh
Assistant Professor
Mathematics & Statistics Department (1991)

Dr. Alawami, Louai Adnan
Ph.D. (2013)
Queen’s University
Lecturer
Computer Engineering Department (2003)
Dr. Alawami, Ali Taleb
Ph.D. (2010)
University of Washington
Assistant Professor
Electrical Engineering Department (2002)

Dr. Al-Badour, Fadi
Ph.D. (2012)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2013)

Dr. Al-Baghli, Nadhir Abbas H
Ph.D. (2001)
Colorado School of Mines
Assistant Professor
Chemical Engineering Department (1991)

Dr. Al-Baiyat, Samir Alwan
Ph.D. (1986)
University of Notre Dame
Professor
Electrical Engineering Department (1977)

Dr. Al-Baridi, Saleh Abdulkarim Abdul-Aziz
Ph.D. (1994)
Florida State University
Assistant Professor
General Studies Department (1984)

Dr. Al-Barri, Thaer
Ph.D. (2007)
Lund University
Assistant Professor
Chemistry Department (2014)
Dr. Al-Basheer, Watheq Ahmad Obidallah
University of Tennessee
Assistant Professor
Physics Department (2012)

Mr. Al-Bashrawi, Mousa Ahmad Ali
Bachelor (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Accounting & MIS Department (2009)

Mr. Al-Battal, Abdullah Faisal
Master (2013)
University of Southern California
Lecturer
Electrical Engineering Department (2010)

Dr. Al-Betar, Abdulrahman Faisal
Ph.D. (2012)
Memorial University, Canada
Assistant Professor
Chemistry Department (2012)

Dr. Albinali, Khaled Mohammed
Ph.D. (2005)
Kent State University
Assistant Professor
Finance & Economics Department (1996)

Dr. Albinmousa, Jafar Husain Ali
Ph.D. (2011)
University of Waterloo
Assistant Professor
Mechanical Engineering Department (2003)
Dr. Al-Dajani, Mansour Bin Abdulaziz Bin
Ph.D. (2001)
University of California Los Angeles
Associate Professor
System Engineering Department (1994)

Dr. Al-Dakhil-Allah, Ali Abdullah
Ph.D. (1998)
University of Manchester
Assistant Professor
Biology Department (1988)

Dr. Aldamer, Shafi Abdulrahman
Ph.D. (2001)
University of Durham
Assistant Professor
General Studies Department (2003)

Dr. Al-Darwish, Nasir Ali Nasir
Ph.D. (1989)
Oregon State University
Associate Professor
Information & Computer Science Department (1982)

Dr. Al-Dharrab, Suhail
Ph.D. (2013)
University of Waterloo
Associate Professor
Electrical Engineering Department (2005)

Dr. Aldheefallah, Mujahed Mohammed
Ph.D. (2009)
University of Calgary
Assistant Professor
System Engineering Department (1999)
Dr. Al-Dini, Salem Ahmad Salem
Ph.D. (2005)
Texas A&M University
Assistant Professor
Mechanical Engineering Department (1994)

Mr. Aldohan, Badr Hamad
Bachelor (2001)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (2001)

Dr. Al-Dosary, Adel Shaheen Yousef
Ph.D. (1991)
University of Michigan
Professor
City & Regional Planning Department (1983)

Dr. Al-Dulaijan, Saleh U.
Ph.D. (1996)
Pennsylvania State University
Associate Professor
Civil Engineering Department (1984)

Dr. Aldurgam, Mohammad Mansour Fadel
Ph.D. (2009)
King Fahd University of Petroleum & Minerals
Assistant Professor
System Engineering Department (2009)

Dr. Al-Duwaish, Hussain Naser .
Colorado State University
Associate Professor
Electrical Engineering Department (1988)
Dr. Al-Dweik, Ahmad Yousef
Ph.D. (2010)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mathematics & Statistics Department (2010)

Dr. Al-Elg, Ali Habibh. Hameed
Ph.D. (1993)
University of Mississippi
Assistant Professor
Finance & Economics Department (1982)

Dr. Al-Fagih, Ashraf Ehsan
Ph.D. (2011)
Queen' S University
Assistant Professor
Information & Computer Science Department (2000)

Dr. Al-Faraj, Taqi Nasr Turky
Ph.D. (1986)
University of Texas, Austin
Associate Professor
Management & Marketing Department (1977)

Dr. Al-Farayedhi, Abdulghani Abdulla
Ph.D. (1987)
University of Colorado, Boulder
Associate Professor
Mechanical Engineering Department (1977)

Dr. Al-Fares, Hesham Kamal .
Ph.D. (1991)
Arizona State University
Professor
System Engineering Department (1984)
Mr. Al-Fifi, Salman Amsari H
Master (2011)
King Fahd University of Petroleum & Minerals
Lecturer
Aerospace Engineering Department (2004)

Dr. Alfuraidan, Monther Rashed Saleh
Michigan State University
Associate Professor

Dr. Al-Gadhib, Ali H.
Ph.D. (1989)
North Carolina State University
Associate Professor
Civil Engineering Department (1980)

Dr. Al-Gahtani, Ahmad S.
Ph.D. (1986)
University of Iowa
Associate Professor
Civil Engineering Department (1986)

Dr. Al-Gahtani, Husain J.
Ph.D. (1992)
Michigan State University
Professor
Civil Engineering Department (1986)

Dr. Al-Gahtani, Ibrahim Mohammad Shaiea
Ph.D. (1987)
University of Wisconsin, Milwaukee
Assistant Professor
Finance & Economics Department (1979)
Dr. Al-Garni, Ahmed Zafer Ali
Ph.D. (1991)
University of Maryland
Professor
Aerospace Engineering Department (1984)

Dr. Al-Garni, Said Ali
Ph.D. (2012)
University of Carleton
Assistant Professor
Mathematics & Statistics Department (1998)

Dr. Alghadhban, Samir Nasser
Ph.D. (2005)
Virginia Polytechnic Institute & State University
Assistant Professor
Electrical Engineering Department (1997)

Dr. Al-Ghahtani, Mesfer Ali Mohammed
Ph.D. (2001)
Um Al-Qura University
Professor
Islamic & Arabic Studies Department (1996)

Dr. Alghamdi, Mohammad Khalaf
Ph.D. (2012)
Mcgill University
Assistant Professor
Electrical Engineering Department (2001)

Dr. Alghamdi, Saeid A.
Ph.D. (1988)
Arizona State University
Assistant Professor
Civil Engineering Department (1982)
Dr. Al-Ghamdi, Salem Matar Saeed
Ph.D. (1994)
Virginia Polytechnic Institute & State University
Professor
Management & Marketing Department (1982)

Dr. Al-Ghamdi, Abdul-Rahim Saeed
Ph.D. (1992)
University of Illinois, Urbana-Champaign
Assistant Professor
System Engineering Department (1981)

Mr. Al-Ghazi, Anas Al-Sayed
Bachelor (2005)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2005)

Dr. Al-Habboubi, Mohammad Husain Amran
Ph.D. (1987)
Oregon State University
Professor
System Engineering Department (1978)

Dr. Al-Hadhrami, Luai Muhammad
Texas A&M University
Associate Professor
Mechanical Engineering Department (1994)

Dr. Al-Hadidi, Laith Awni Abdul-Fattah
Ph.D. (2011)
King Fahd University of Petroleum & Minerals
Assistant Professor
Construction Engineering Management (2013)
Dr. Alhajyaseen, Wael
Nagoya University, Japan
Assistant Professor
Civil Engineering Department (2013)

Dr. Al-Hammad, Abdalmohsen Abdalla
University of Kansas
Professor
Architecture Engineering Department (1978)

Dr. Al-Hamouz, Zakariya Mahmoud
Ph.D. (1994)
King Fahd University of Petroleum & Minerals
Professor
Electrical Engineering Department (1989)

Dr. Al-Harbi, Ahmed Bakr
Ph.D. (2014)
University of Columbia
Assistant Professor
Chemistry Department (2014)

Dr. Al-Harbi, Abdullah Daghaiyem
Florida Atlantic University
Assistant Professor
Accounting & MIS Department (1993)

Dr. Al-Harthi, Mamdouh Ahmed
Ph.D. (2007)
University of Waterloo
Associate Professor
Chemical Engineering Department (2001)

Mr. Al-Hashim, Amin Ghalib Saleh
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (2005)

Dr. Al-Hashim, Hasan Salman A.
Ph.D. (1982)
Colorado School of Mines
Adjunct Associate Professor
Petroleum Engineering Department (1977)

Dr. Al-Hazmi, Muhammad Hasan Salem
Ph.D. (1996)
University of Manchester
Assistant Professor
Accounting & MIS Department (1984)

Dr. Al-Hejji, Mohsen Ahmad Ali
Ph.D. (1987)
University of Colorado, Boulder
Assistant Professor
Finance & Economics Department (1979)

Mr. Al-Herz, Ahmed Ibrahim
Bachelor (2005)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (2005)

Dr. Al-Homidan, Suliman Saleh
Ph.D. (1993)
University of Dundee
Professor
Mathematics & Statistics Department (1996)

Dr. Al-Homoud, Mohammad Saad
Ph.D. (1994)
Texas A&M University
Professor
Architecture Engineering Department (1986)

Dr. Alhooshani, Khalid Rashed Saif
Ph.D. (2005)
University of South Florida
Assistant Professor
Chemistry Department (2007)

Dr. Al-Humeidan, Essam Ibn Abdul- Mohsen Nasir
Ph.D. (2001)
Al-Imam Mohammed Bin Saud Islamic University
Associate Professor
Islamic & Arabic Studies Department (1996)

Dr. Alhumidi, Bader Ahmed
Ph.D. (2011)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mathematics & Statistics Department (1998)

Mr. Ali, Ashraf Mohammad
Master (2013)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (2014)

Dr. Ali, Bassam Mohamad El
Ph.D. (1989)
Universite Pierre & Marie Curie
Professor
Chemistry Department (1996)

Dr. Al-Jabri, Ibrahim Muhammad Ibrahim
Ph.D. (1991)
Illinois Institute of Technology
Associate Professor
Accounting & MIS Department (1981)

Dr. Al-Jalal, Abdulaziz Mohammad
Ph.D. (2001)
Massachusetts Institute of Technology
Assistant Professor
Physics Department (1987)

Mr. Aljamaan, Hamoud Ibrahim Hamad
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (2006)

Dr. Al-Jamid, Husain Ali S
Ph.D. (1986)
King Fahd University of Petroleum & Minerals
Professor
Electrical Engineering Department (1984)

Dr. Aljasser, Khalid Abdullah
Ph.D. (2010)
University of Melbourne
Assistant Professor
Information & Computer Science Department (2000)

Dr. Aljbarat, Abdulaziz Sulieman Abu-Sagar
Ph.D. (1998)
Umdarman Islamic University
Lecturer
Islamic & Arabic Studies Department (1984)

Dr. Al-Juhani, Abdul-Hadi Abdallah R
Ohio University
Assistant Professor
Chemical Engineering Department (1997)

Dr. Aljundi, Isam
Ph.D. (2000)
Cleveland State University, Ohio
Associate Professor
Chemical Engineering Department (2013)

Dr. Al-Kaabi, Saif Ahmad
University of Colorado, Boulder
Assistant Professor
Mechanical Engineering Department (1982)

Dr. Alkahtany, Abdulwahab Said Saeed
Ph.D. (1998)
University of North Texas
Associate Professor
Management & Marketing Department (2002)

Dr. Al-Karmi, Anan Mohammad
Ph.D. (1993)
University of Mississippi
Assistant Professor
Physics Department (2000)

Dr. Al-Khaldi, Muhammad Abdulmuhsen Ahmad
Ph.D. (1991)
Oklahoma State University
Assistant Professor
Accounting & MIS Department (1980)

Dr. Al-Khaledi, Abdalrhuman Hamad
Ph.D. (2012)
Al-Imam Mohammed Bin Saud Islamic University
Assistant Professor
Islamic & Arabic Studies Department (2012)

Dr. Al-Khalil, Mohammed Ibrahim Abdullatif
Ph.D. (1991)
University of Kansas
Associate Professor
Construction Engineering Management (1982)

Dr. Alkharobi, Talal Mousa Mohammed
Texas A&M University
Assistant Professor
Computer Engineering Department (1993)

Mr. Al-Kharoubi, Amer M.
Master (2013)
Rochester Institute of Technology
Lecturer
Architecture Department (2009)

Mr. Al-Khars, Mohammed Ahmed
MBA (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Management & Marketing Department (2011)

Dr. Al-Khatib, Wasfi Ghassan Wasfi
Purdue University
Assistant Professor
Information & Computer Science Department (2002)

Dr. Al-Khattaf, Sulaiman Saleh Fahad
Ph.D. (2001)
University of Western Ontario
Professor
Chemical Engineering Department (1992)

Mr. Alkhbbaz, Mohammed Hamzah
Master (2011)
Massachusetts Institute of Technology
Lecturer
Architecture Department (2005)

Dr. Alkhoraidly, Abdulaziz Muhammad
Ph.D. (2011)
University of Waterloo
Assistant Professor
Information & Computer Science Department (2002)

Dr. Al-Khulaify, Naser Ali Naser
Ph.D. (1990)
Cairo University
Assistant Professor
Islamic & Arabic Studies Department (1980)

Dr. Al-Kuhaili, Mohammad Fayad Hassan
Ph.D. (1999)
University of Texas, Dallas
Professor
Physics Department (1988)

Mr. Al-Lehyani, Ayman Fazea Saleh
MS (2008)
King Fahd University of Petroleum & Minerals
Lecturer
Geosciences Department (2010)

Mr. Allen, John Ainsworth
Master (1984)
United States Sports Academy, Alabama
Lecturer
Physical Education Department (2009)

Dr. Al-Madani, Basem Mohammed Shaker
Ph.D. (2005)
Montan University Leoben, Leoben, Austria
Assistant Professor
Computer Engineering Department (2007)

Dr. Al-Madkhali, Nawaf Ahmed
Ph.D. (2007)
University of Arkansas
Assistant Professor
General Studies Department (1997)

Dr. Al-Maghrabi, Hamza Mohammad
Ph.D. (1993)
University of Manchester
Assistant Professor
Electrical Engineering Department (1980)

Mr. Al-Mahdy, Omar Essam
M. Arch (2013)
University of Waterloo
Lecturer
Architecture Department (2007)

Dr. Al-Malack, Muhammad H.
Ph.D. (1993)
University of Newcastle-upon-Tyne
Professor
Civil Engineering Department (1981)

Dr. Almansur, Abdullah Mohammed
Ph.D. (2012)
University of Waterloo
Assistant Professor
Finance & Economics Department (2004)

Mr. Al-Marbati, Abdulrahman Salman Jafar
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (2009)

Dr. Al-Marzoug, Saeed Majed
Ph.D. (2009)
University of Ottawa
Assistant Professor
Physics Department (1998)

Dr. Al-Mashookhy, Abdullah Sulaiman Salman
Ph.D. (1985)
Al-Imam Mohammed Bin Saud Islamic University
Assistant Professor
Islamic & Arabic Studies Department (1982)

Mr. Al-Matouq, Faris Ahmed
Master (2013)
King Fahd University of Petroleum & Minerals
Lecturer
Physics Department (2014)

Dr. Almatrodi, Dhaifallah Ibrahim
Ph.D. (2007)
Western Michigan University
Assistant Professor
General Studies Department (1996)

Dr. Al-Meer, Abdulrahim Ali
Ph.D. (1983)
Arizona State University
Professor
Management & Marketing Department (1976)

Mr. Al-Moghathawi, Yasser Adel
Master (2012)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2010)

Mr. Almogren, Abadaltaif Yosuf
Master (1995)
Al-Imam Mohammed Bin Saud Islamic University
Lecturer
General Studies Department (2006)

Dr. Almohawis, Soliman Bin Abdullah Bin Hamad
Ph.D. (1986)
University of Texas, Austin
Associate Professor
Construction Engineering Management (1980)

Dr. Al-Mouhamed, Mayez Abdallah Omar
Ph.D. (1982)
University of Paris
Professor
Computer Engineering Department (1983)

Dr. Al-Muallem, Hassan Ali Saleh
Ph.D. (2000)
University of Colorado
Assistant Professor
Chemistry Department (1989)

Dr. Al-Mubaiyedh, Usamah A.
Ph.D. (2001)
Washington University, St. Louis
Assistant Professor
Chemical Engineering Department (1994)

Dr. Al-Muhaini, Mohammad
Ph.D. (2012)
Arizona State University
Assistant Professor
Electrical Engineering Department (2004)

Dr. Al-Muhammad, Sultan Ahmad
Ph.D. (2005)
University of Southern California
Assistant Professor
Information & Computer Science Department (1994)

Dr. Al-Muhtaseb, Husni A.
Ph.D. (2010)
University of Bradford
Assistant Professor
Information & Computer Science Department (1988)

Dr. Almulhem, Ahmad Saleh
Ph.D. (2007)
Victoria University
Assistant Professor
Computer Engineering Department (1993)

Dr. Al-Mulhem, Mohammad Saleh
Ph.D. (1990)
Oregon State University
Associate Professor
Information & Computer Science Department (1979)

Mr. AlMulhim, Hussam Mohammad
Master (2009)
Virginia Commonwealth University
Lecturer
Accounting & MIS Department (2004)

Dr. Al-Mutairi, Eid Musaad
Ph.D. (2008)
Texas A&M University
Associate Professor
Chemical Engineering Department (1996)

Dr. Al-Mutawa, Jaafar Hasan Mohamed Yusuf
Kyoto University
Assistant Professor

Dr. Almuzeini, Khalid Abdullah Ali
Ph.D. (1996)
Al-Imam Mohammed Bin Saud Islamic University
Assistant Professor
Islamic & Arabic Studies Department (1997)

Mr. Al-Naeem, Ibrahim Naeem A.
Master (2009)
University of Colorado
Lecturer
Finance & Economics Department (2006)

Dr. Al-Naffouri, Tareq Yousuf
Stanford University
Associate Professor
Electrical Engineering Department (1993)

Mr. Al-Najjar, Yahya Jawad Sadiq
Master (1989)
University of Washington
Lecturer
Architecture Department (1990)

Dr. Al-Najjar, Atef Jawad
Ph.D. (1993)
Purdue University
Assistant Professor
Computer Engineering Department (1975)

Dr. Al-Nasser, Ali Salman
Ph.D. (1989)
University of Pennsylvania
Assistant Professor
City & Regional Planning Department (1981)

Dr. Al-Nassar, Yaagoub Nassar
Ph.D. (1990)
University of Colorado, Boulder
Associate Professor
Mechanical Engineering Department (1978)

Mr. Al-Nazhah, Hassan Mohammad Abdalkareem
Master (1989)
Rice University
Lecturer
Architecture Department (1986)

Dr. Al-Ofi, Khalaf A.
Ph.D. (1994)
King Fahd University of Petroleum & Minerals
Assistant Professor
Civil Engineering Department (1984)

Dr. Al-Ofi, Khalaf Aidha Mohammed
Ph.D. (1994)
King Fahd University of Petroleum & Minerals
Assistant Professor
Construction Engineering Management (1983)

Dr. Al-Ohali, Muhammad Abdul-Aziz
Ph.D. (1993)
Duke University
Associate Professor
Physics Department (1981)

Mr. Al-Ohali, Rakan Abdallah
Master (2008)
University of Southern California
Lecturer
Electrical Engineering Department (2000)

Dr. Alojairi, Ahmed Saleh
Ph.D. (2011)
University of Waterloo
Assistant Professor
Accounting & MIS Department (2001)

Dr. Al-Osta, Mohammed
Ph.D. (2013)
King Fahd University of Petroleum & Minerals
Assistant Professor
Civil Engineering Department (2013)

Dr. Alotaibi, Mazen Marzoug
Ph.D. (2008)
University of Arkansas
Assistant Professor
System Engineering Department (1999)

Dr. Alowidha, Amjed Abdalmuslah
Ph.D. (2007)
University of Denver
Assistant Professor
General Studies Department (1999)

Mr. Al-Qahtani, Nasser A.
MBA (2013)
King Fahd University of Petroleum & Minerals
Lecturer
Management & Marketing Department (2013)

Dr. Al-Qahtani, Hussain Mohammad
University of Colorado
Associate Professor
Mechanical Engineering Department (1997)

Mr. Al-Qahtani, Husain Dhawi Husain
MBA (2008)
Southern Illinois State University
Lecturer
Management & Marketing Department (2005)

Dr. Al-Qahtani, Mohammed Shaye Ali
Ph.D. (2001)
Texas A&M University
Assistant Professor
Mechanical Engineering Department (1990)

Mr. Al-Qahtani, Khaled Mesfer Mufarreh
Bachelor (2008)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (2008)

Dr. Al-Qahtani, Mohammad Ali M
University of Manchester
Assistant Professor
Electrical Engineering Department (1994)

Dr. Al-Qawasmi, Jamal Abdel-Qader
Ph.D. (1999)
Texas A&M University
Assistant Professor
Architecture Department (2003)

Dr. Al-Qhatani, Saeed Hussain Saeed
Islamic University, Medina
Assistant Professor
Islamic & Arabic Studies Department (1996)

Dr. Alqurtuby, Sumanto
Ph.D. (2013)
Boston University
Assistant Professor
General Studies Department (2014)

Dr. Al-Qutub, Amro Mohammad Khaleed
Ph.D. (1997)
University of Alabama
Professor
Mechanical Engineering Department (1987)

Dr. Al-Ramadan, Khalid Abdulsamad Hasan
Uppsala University
Associate Professor
Geosciences Department (1999)

Dr. Al-Ramadan, Baqer Muhammad Mansour
Ph.D. (1993)
University of Pennsylvania
Assistant Professor
City & Regional Planning Department (1983)

Dr. Al-Rasasi, Ibrahim Husain Ali
Ph.D. (2001)
Temple University
Assistant Professor
Mathematics & Statistics Department (1992)

Dr. Alrub, Tayseer Rafe Mohammad Abu
Ph.D. (2008)
Memorial University of Newfoundland
Assistant Professor
Preparatory Science & Engineering Program (2009)

Dr. Alsaadi, Abdulaziz Abdulrahman Hamad
Texas A&M University
Associate Professor
Chemistry Department (1997)

Dr. Al-Sabah, Walid Sabah Alahmed
Ph.D. (1993)
University of California Riverside
Associate Professor
Mathematics & Statistics Department (1977)

Dr. Al-Sadah, Jihad Hassan Hussain
Ph.D. (2007)
University of Wisconsin, Madison
Assistant Professor
Physics Department (1996)

Dr. Alsaeed, Ali Abdullah
Ph.D. (2010)
Virginia Technology
Assistant Professor
Mechanical Engineering Department (2000)

Mr. Al-Sahlawi, Mansour Mohammed Abdulaziz
Master (2009)
The John Hopkin University
Lecturer
Finance & Economics Department (2009)

Dr. Al-Sahlawi, Mohammad Abdulaziz
Ph.D. (1985)
University of Wisconsin, Milwaukee
Professor
Finance & Economics Department (1978)

Dr. Al-Saifi, Nayef Mesnad
Ph.D. (2011)
University of British Columbia, Canada
Assistant Professor
Chemical Engineering Department (2000)

Mr. Alsaihati, Ibrahim Mohammad Ibrahim
Master (2006)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (2001)

Dr. Al-Sakran, Sulaiman Abdulla
Ph.D. (1994)
University of Houston
Associate Professor
Finance & Economics Department (1985)

Dr. Al-Sarkhi, Abdelsalam Mohammad
Ph.D. (1999)
Oklahoma State University
Professor
Mechanical Engineering Department (2008)
Mr. Al-Sawi, Esam Abdel Qader Omar
Master (2003)
Yarmouk University
Lecturer

Mr. Al-Sayed, Sayed Omar Sayed Abdul-Salam
Master (1998)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Math Program (1980)

Dr. Al-Senan, Shukhri H.
Ph.D. (1985)
Georgia Institute of Technology
Associate Professor
Civil Engineering Department (1976)

Mr. Al-Sghan, Ibrahim
MSc (2012)
King Fahd University of Petroleum & Minerals
Lecturer
Civil Engineering Department (2010)

Dr. Alshahrani, Mohammed Mogib Mohammed
Ph.D. (2012)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mathematics & Statistics Department (2008)

Dr. Al-Shahrani, Saad Muhammad Saad
Ph.D. (2001)
Virginia Technology
Associate Professor
Electrical Engineering Department (1993)
Dr. Alshaibani, Adel Sadeq
Ph.D. (2008)
Concordia University
Assistant Professor
Architecture Engineering Department (2014)

Dr. Al-Shaibani, Abdulaziz Bin Muhareb Bin
Ph.D. (1999)
Texas A&M University
Associate Professor
Geosciences Department (1988)

Dr. Al-Shaikhi, Ali Ahmad
Ph.D. (2008)
Dalhousie University
Assistant Professor
Electrical Engineering Department (1997)

Dr. AlShalhoob, Salah Fahad
Ph.D. (2001)
University of Edinburgh
Assistant Professor
Islamic & Arabic Studies Department (1998)

Dr. Al-Shammari, Khalid Abulaziz
Louisiana State University
Assistant Professor

Dr. Al-Shammari, Abdallah Abdulaziz
Ph.D. (2008)
University of Alberta
Assistant Professor
Chemical Engineering Department (1999)
Dr. Al-Shammari, Khalid Abdul-Aziz
Louisiana State University
Assistant Professor
Preparatory Math Program (1995)

Dr. Al-Shammari, Eid Sendi
Ph.D. (1990)
University of Oklahoma
Assistant Professor
Management & Marketing Department (1980)

Mr. Al-Shareef, Khaled Hashim Abdallah
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2005)

Mr. Al-Shawish, Elyas Mohammed
Master (1995)
Pittsburg State University
Lecturer
Preparatory Math Program (2005)

Dr. Al-Shayea, Naser A.
Ph.D. (1994)
University of Michigan
Professor
Civil Engineering Department (1982)

Dr. Alshayeb, Mohammad Rabah
University of Alabama
Associate Professor
Information & Computer Science Department (2003)
Dr. Alshebil, Saleh Abdulaziz
Ph.D. (2007)
University of Texas, Arlington
Assistant Professor
Management & Marketing Department (1999)

Dr. Alshuhail, Abdullah Abdulaziz
Ph.D. (2011)
University of Calgary
Assistant Professor
Geosciences Department (2002)

Dr. Al-Shuhail, Abdullatif Abdulrahman
Ph.D. (1998)
Texas A&M University
Associate Professor
Geosciences Department (1988)

Dr. Al-Shukri, Ali Mohammad
Ph.D. (1991)
Georgia State University
Assistant Professor
Physics Department (1977)

Dr. Al-Shuridah, Obaid Mobarak Saad
Ph.D. (2005)
Southern Illinois University
Assistant Professor
Management & Marketing Department (1999)

Dr. Alshuwailhat, Habib Mahdi Mohmmmed
Ph.D. (1988)
Northwestern University
Professor
City & Regional Planning Department (1980)
Dr. Al-Smail, Jamal Husain
Ph.D. (2012)
University of Ottawa
Assistant Professor
Mathematics & Statistics Department (2000)

Mr. Al-Subaie, Fahad Mutlaq
Master (2003)
University of Southern California
Lecturer
Finance & Economics Department (2001)

Dr. Al-Sughaiyer, Mohammed A.
Ph.D. (1994)
King Fahd University of Petroleum & Minerals
Assistant Professor
Civil Engineering Department (1984)

Mr. Alsuhaim, Adil Abdulaziz S
Master (2009)
California State University
Lecturer
Information & Computer Science Department (2005)

Dr. Alsulaiman, Fahad Abdulaziz
Ph.D. (2011)
University of Waterloo
Assistant Professor
Mechanical Engineering Department (2001)

Dr. Al-Sulaiman, Khalid Abdulaziz Sulaiman
Ph.D. (2011)
Al-Imam Mohammed Bin Saud Islamic University
Assistant Professor
Islamic & Arabic Studies Department (2007)
Dr. Al-Sulami, Muosa Wasl Waslallah
Ph.D. (2007)
Um Al-Qura University
Assistant Professor
Islamic & Arabic Studies Department (2010)

Dr. Alsunaidi, Mohammad Abdulaziz Husain
Arizona State University
Professor
Electrical Engineering Department (1984)

Dr. Al-Sunaidi, Abdullah Abdulaziz Hussain
Ph.D. (1999)
University of Maryland
Associate Professor
Physics Department (1989)

Dr. Al-Sunni, Fouad Ibn Mohammad Isa
Ph.D. (1992)
University of Texas, Arlington
Professor
System Engineering Department (1984)

Dr. Al-Suwailem, Omar Abdallah Abdulaziz
Ph.D. (1996)
University of Missouri
Assistant Professor
Electrical Engineering Department (1983)

Dr. Al-Suwayyan, Abdulaziz A.
Ph.D. (1982)
University of Sheffield
Professor
Chemistry Department (1977)
Dr. Al-Suwiyan, Mohammad S.
Ph.D. (1993)
Colorado State University
Professor
Civil Engineering Department (1983)

Dr. Althagfi, Jameel Raddah Atiya
Ph.D. (2014)
University of York, Canada
Assistant Professor
Chemistry Department (2014)

Dr. Al-Thukair, Assad
Ph.D. (1991)
Boston University
Associate Professor
Biology Department (1980)

Dr. Alturki, Musab Ahmad
Ph.D. (2011)
University of Illinois
Assistant Professor
Information & Computer Science Department (2002)

Dr. Al-Turki, Umar Mustafa
Ph.D. (1994)
Rensselaer Polytechnic Institute
Professor
System Engineering Department (1982)

Dr. Altwaigeri, Khaled Mohammed
Um Al-Qura University
Assistant Professor
Islamic & Arabic Studies Department (1998)
Mr. Alvi, Faisal
Master (2000)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1998)

Mr. Alwahaishi, Saleh Hussein
Master (2001)
New Mexico State University
Lecturer
Accounting & MIS Department (2008)

Dr. Alwahaibi, Sami Abdallah
Ph.D. (2009)
Mississippi State University
Assistant Professor
Management & Marketing Department (2002)

Mr. Al-Yagoub, Mohammed
Master (2013)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2003)

Dr. Al-Yousef, Hasan Yousef Ali
Ph.D. (1985)
Stanford University
Adjunct Associate Professor
Petroleum Engineering Department (1977)

Mr. Al-Yousef, Zuhair
Master (2011)
King Abdullah University of Science and
Lecturer
Chemical Engineering Department (2012)
Dr. Al-Zaher, Husain Abdullah A
Ph.D. (2001)
Ohio University
Professor
Electrical Engineering Department (1994)

Dr. Alzahrani, Abdulkareem Bin Saleh Abdullah
Um Al-Qura University
Associate Professor
Islamic & Arabic Studies Department (2001)

Dr. Alzahrani, Mohammed Faraj Ali
Oklahoma State University
Assistant Professor
Finance & Economics Department (1998)

Dr. Al-Zahrani, Abdallah Muhammad
Ph.D. (2014)
University of Alberta, Canada
Lecturer
Physics Department (2014)

Dr. Al-Zahrani, Mesfer M.
Pennsylvania State University
Associate Professor
Civil Engineering Department (1987)

Mr. Al-Zamil, Mohammad Abdulrahman
Master (2001)
Um Al-Qura University
Lecturer
Islamic & Arabic Studies Department (1996)
Dr. Al-Ziq, Khalil Ali Ali
Ph.D. (1989)
University of Illinois, Chicago
Professor
Physics Department (1989)

Mr. Al-Zoubi, Mohammad Odeh Mohammad
Master (2000)
University of Jordan
Lecturer

Dr. Amin, Mohammad Bakr A
Ph.D. (1979)
Oklahoma State University
Professor
Chemical Engineering Department (1972)

Dr. Amin, Alaaeldin Abdul Monem
Ph.D. (1987)
University of Utah
Professor
Computer Engineering Department (1988)

Mr. Amison, Craig Philip
Master (1998)
University of Salford
Lecturer
Preparatory English Program (2011)

Dr. An, Heungjo
Ph.D. (2011)
Texas A&M University, College Station
Assistant Professor
System Engineering Department (2013)
Mr. Anabosi, Raid Fuaad Said
Master (1991)
University of Jordan
Lecturer

Dr. Andijani, Abdulbasit A.
Ph.D. (1992)
Ohio State University, Columbus
Professor
System Engineering Department (1983)

Mr. Anis, Mohammad Qasim Aziz
Master (1987)
New Jersey Institute of Technology
Lecturer
Mechanical Engineering Department (1999)

Dr. Antar, Mohamed Abdelkarim
Ph.D. (1996)
King Fahd University of Petroleum & Minerals
Professor
Mechanical Engineering Department (1996)

Dr. Antony, Varghese Chakkalamattath
Ph.D. (1998)
Rani Durgavati University
Lecturer
Physical Education Department (2009)

Mr. Anyan, John Matthew
Master (2003)
Sheffield Hallam University
Lecturer
English Language Department (2014)

Mr. Appling, John Richard
Master (1993)
Dr. Arafat, Samer Muhammad Adnan
University of Missouri
Assistant Professor
Information & Computer Science Department (2009)

Mr. Arafeh, Shaher Rashed
Master (1975)
The State University of New York
Lecturer
Preparatory Math Program (1989)

Dr. Arif, Abul Fazal Muhammad
Ph.D. (1991)
University of Minnesota
Professor
Mechanical Engineering Department (1998)

Mr. Armstrong, John Neil Murray
Master (2005)
University of Portsmouth
Lecturer
Preparatory English Program (2008)

Mr. Ashmeel, Riyad Mobark
Master (2010)
University of Nottingham
Lecturer
Architecture Department (2011)

Mr. Ashour, Ziad M. Noor
M. Arch (2014)
Southern California Institute of Architecture
Lecturer
Architecture Department (2009)
Dr. Asif, Muhammad
Edinburgh Napier University
Associate Professor
Architecture Engineering Department (2012)

Mr. Aslam, Muhammad Waheed
Master (1996)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1992)

Dr. Asrof, Ali Shaikh
Ph.D. (1980)
State University of New York
Professor
Chemistry Department (1981)

Dr. Assaf, Sadi Abdelafo
Ph.D. (1982)
University of Illinois, Urbana-Champaign
Professor
Construction Engineering Management (1982)

Dr. Atieh, Muataz Ali Hussien
Ph.D. (2005)
University Putra Malaysia
Associate Professor
Chemical Engineering Department (2007)

Dr. Awotunde, Abeeb Adebowale
Ph.D. (2010)
Stanford University
Assistant Professor
Petroleum Engineering Department (2010)
Dr. Ayar, Tahir
Ph.D. (1988)
Rensselaer Polytechnic Institute
Assistant Professor
System Engineering Department (1999)

Dr. Ayub, Mohammed Sardar
Ph.D. (1988)
Heriot Watt University
Professor
Physics Department (1991)

Dr. Azad, Hassan
Ph.D. (1977)
University of Notre Dame
Professor
Mathematics & Statistics Department (1996)

Dr. Azad, Abul Kalam
Ph.D. (1973)
Concordia University
Professor
Civil Engineering Department (1975)

Dr. Azeem, Kaukab
Osmania University
Lecturer
Physical Education Department (2007)

Mr. Azeem, Mohammad Abdul
Master (2014)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (2014)
Dr. Azzedin, Farag Ahmed Mohammad
University of Manitoba
Associate Professor
Information & Computer Science Department (2004)

Mr. Baaqil, Hassan
Master (2010)
University of Manchester
Lecturer
Chemical Engineering Department (2012)

Mr. Baber, Faraz Jamshaid Ali
Master (2008)
University of Glasgow
Lecturer
Preparatory Science & Engineering Program (2011)

Dr. Babsail, Mohammad Omar
Ph.D. (2011)
Illinois Institute of Technology
Assistant Professor
Architecture Department (2001)

Dr. Badawi, Hassan Mohamed
Ph.D. (1985)
University of South Carolina
Professor
Chemistry Department (1991)

Dr. Badr, Hassan Mohamed
Ph.D. (1977)
University of Western Ontario
Professor
Mechanical Engineering Department (1979)
Dr. Bahaidarah, Haitham Muhammad
Texas A&M University
Associate Professor
Mechanical Engineering Department (1996)

Dr. Ba-Hamdan, Walid Umar
Ph.D. (2012)
University of Waterloo
Assistant Professor
Accounting & MIS Department (2002)

Mr. Bahjat, Ahmed Abdullah M
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (2006)

Dr. Bahlouli, Hocine Mohamed Omar
Ph.D. (1988)
University of Illinois, Urbana-Champaign
Professor
Physics Department (1989)

Mr. Baig, M. Ghouse
MSc (1996)
King Fahd University of Petroleum & Minerals
Lecturer
Civil Engineering Department (2003)

Mr. Baig, Mirza Murtuza Ali
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (2009)
Mr. Baker, John Lawrence
Master (2007)
Eastern Michigan University
Lecturer
Preparatory English Program (2013)

Dr. Bakhashwain, Jamil M.
Ph.D. (1989)
University of Colorado, Boulder
Associate Professor
Electrical Engineering Department (1978)

Dr. Balah, Mohamed Ali
Ph.D. (2000)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1994)

Dr. Balghonaim, Adil Suliman Mohammed
Ph.D. (1993)
University of Missouri
Assistant Professor
Electrical Engineering Department (1994)

Dr. Baluch, Muhammed H.
Ph.D. (1970)
Purdue University, Lafayette, Indiana
Professor
Civil Engineering Department (1977)

Dr. Bangbang, Trigunarsyah
University of Melbourne
Associate Professor
Construction Engineering Management (2013)
Mr. Baqais, Ahmed Hassan Ahmed
Master (2007)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Science & Engineering Program (2009)

Dr. Barnawi, Abdulaziz Yaagoub Muhammad
Ph.D. (2009)
Carleton University
Assistant Professor
Computer Engineering Department (1999)

Dr. Baroudi, Uthman Abdul-Rahman
Ph.D. (2000)
Concordia University
Assistant Professor
Computer Engineering Department (2002)

Dr. Ba-Shammakh, Mohammed Saleh
Ph.D. (2007)
University of Waterloo
Associate Professor
Chemical Engineering Department (1999)

Dr. Bashmal, Salem Mohamed Saeed
Ph.D. (2011)
Concordia University
Assistant Professor
Mechanical Engineering Department (2011)

Dr. Bazoune, Abdelaziz
University of Southampton
Assistant Professor
Mechanical Engineering Department (1990)
Dr. Belhaiza, Slim
Ph.D. (2008)
Ecole Polytechnique of Montreal
Assistant Professor
Mathematics & Statistics Department (2009)

Dr. Bendania, Ahmed Mohammed-Laid
Ph.D. (1988)
University of London
Assistant Professor
General Studies Department (2008)

Dr. Bendaya, Mohammad Ali
Ph.D. (1988)
Georgia Institute of Technology
Professor
System Engineering Department (1989)

Mr. Berry, David MacFarlane
Master (1992)
Niagara University
Lecturer
English Language Department (2014)

Dr. Bertotti, Giovanni
Ph.D. (1990)
ETH Zurich - Swiss Federal Institute of Technology
Adjunct Professor
Geosciences Department (2015)

Mr. Billam, Josh Simon
Bachelor (2003)
James Cook University of North Queensland
Instructor
English Language Department (2009)
Dr. Binns, Stephen Ernest
Pennsylvania State University
Assistant Professor
Mathematics & Statistics Department (2007)
Mr. Blazenko, Gordon David
Master (1995)
Reading University
Lecturer
English Language Department (2010)

Dr. Bokhari, Ashfaque Hussain
Ph.D. (1987)
Quaid-I-Azam University
Professor

Dr. Bokhari, Muhammad Ashfaq
Ph.D. (1986)
University of Alberta
Professor
Mathematics & Statistics Department (1998)

Dr. Bonfoh, Ahmed Sanih
Ph.D. (2001)
University of Poitiers
Associate Professor
Mathematics & Statistics Department (2008)

Mr. Bouchama, Mostefa
MSc (1987)
Eastern Michigan University
Lecturer
Civil Engineering Department (1989)

Dr. Boucherif, Abdelkader Youcef Abdelkader
Ph.D. (1979)
Brown University
Professor
Mathematics & Statistics Department (1999)
Mr. Brigham, Andrew Michael
Master (1978)
Lancaster University
Lecturer
Preparatory English Program (1999)

Mr. Brooks, Stephen
Bachelor (1989)
Middlesex U + CFBT Education Services
Lecturer
Preparatory English Program (2013)

Mr. Brookshire, Barrett Foster
Master (2009)
Eastern Michigan University
Lecturer
Preparatory English Program (2013)

Mr. Brown, Paul Graeme
Master (1997)
University of Edinburgh
Lecturer
Preparatory English Program (2011)

Dr. Bubshait, Abdulaziz Abdul-Rahman Khalid
Ph.D. (1985)
University of Washington
Professor
Construction Engineering Management (1978)

Dr. Budaiwi, Ismail Mohammad Ismail
Ph.D. (1994)
Concordia University
Associate Professor
Architecture Engineering Department (1985)
Dr. Bukhari, Aaladin A.
Ph.D. (1996)
University of Colorado, Boulder
Associate Professor
Civil Engineering Department (1988)

Mr. Burridge, Michael John
Master (1981)
University of Sussex
Lecturer
Preparatory English Program (2003)

Mr. Butt, Mohammad Mohsen
Master (2014)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Science & Engineering Program (2014)

Mr. Carey, John Martin
Master (2002)
University of Leicester
Lecturer
Preparatory English Program (2008)

Dr. Chanane, Bilal
Ph.D. (1990)
University of Sheffield
Professor
Mathematics & Statistics Department (1994)

Dr. Chanbasha, Basheer
Ph.D. (2005)
National University of Singapore
Assistant Professor
Chemistry Department (2009)
Dr. Cheded, Lahouari
Ph.D. (1988)
University of Manchester
Associate Professor
System Engineering Department (1984)

Mr. Chenaoua, Kamel Saad Ahmad
Master (1989)
University of Hull
Lecturer
Computer Engineering Department (1995)

Mr. Choi, Hong Jun
Master (1995)
United States Sports Academy, Alabama
Lecturer
Physical Education Department (2006)

Dr. Chowdhury, Shakhawat
Ph.D. (2009)
Queens University, Kingston, Ontario Canada
Assistant Professor
Civil Engineering Department (2010)

Dr. Clermont, Frantz
Ph.D. (1992)
Australian National University
Lecturer
Preparatory English Program (2012)

Mr. Combes, Edward Abbot
Master (1982)
School For International Training
Lecturer
Preparatory English Program (1989)
Mr. Congreve, Abdulrahman William
Master (2002)
University of Toledo
Lecturer
English Language Department (2002)

Mr. Dale, Terry
Master (1981)
University of Essex
Lecturer
English Language Department (2008)

Mr. Daly, Thomas
Bachelor (1978)
University of Manchester
Instructor
English Language Department (2009)

Mr. Dastageer, Mohamed Abdulkader
Master (1993)
King Fahd University of Petroleum & Minerals
Lecturer
Physics Department (1993)

Mr. Debenham, Leonard William
Master (2001)
Avondale College
Lecturer
Preparatory English Program (2009)

Dr. Dehwah, Hamoud Ahmad Farhan
Ph.D. (1999)
Loughborough University
Assistant Professor
Preparatory Math Program (1993)
Mr. Demir, Bayram Kahraman
Master (1996)
University of Illinois, Urbana-Champaign
Lecturer
Preparatory Math Program (2001)

Dr. Deriche, Mohamed
Ph.D. (1992)
University of Minnesota
Associate Professor
Electrical Engineering Department (2001)

Mr. Donovan, Anthony Francis
Master (1970)
University of California Berkeley
Lecturer
English Language Department (1997)

Dr. Duffuaa, Salih Osman
Ph.D. (1982)
University of Texas, Austin
Professor
System Engineering Department (1984)

Dr. Dwaikat, Nidal Khalid
Ph.D. (2009)
Osaka University, Japan
Assistant Professor
Physics Department (2013)
Dr. Echi, Othman
Ph.D. (1993)
Université De Tunis El Manar
Professor
Mathematics & Statistics Department (2009)

Dr. Edi, Prasetyo
Ph.D. (1998)
Cranfield University
Assistant Professor
Aerospace Engineering Department (2009)

Dr. Eid, Mustafa Ismail Mustafa
Massey University
Assistant Professor
Accounting & MIS Department (2003)

Dr. El-Alfy, El-Sayed Mohamed
Ph.D. (2001)
Stevens Institute of Technology
Associate Professor
Information & Computer Science Department (2004)

Dr. El-Amin, Ibrahim Mohammad
Ph.D. (1978)
University of Manchester
Associate Professor
Electrical Engineering Department (1978)

Dr. El-Attar, Mohamed
Ph.D. (2009)
University of Alberta
Associate Professor
Information & Computer Science Department (2009)
Dr. El-Bassuny, Tarek Ahmed Helmy A.
Kyushu University
Associate Professor
Information & Computer Science Department (2004)

Dr. El-Ferik, Sami
Ph.D. (1996)
Ecole Polytechnique of Montreal
Associate Professor
System Engineering Department (2000)

Dr. El-Gebeily, Mohamed Ali
Oklahoma State University
Professor
Mathematics & Statistics Department (1988)

Dr. El-Gebeily, Mohamed Ali
Oklahoma State University
Professor
Mathematics & Statistics Department (1988)

Dr. Elghanmi, Abdarrahim
Ph.D. (1989)
Washington University In St. Louis
Assistant Professor
Preparatory Math Program (2009)

Dr. Elish, Mahmoud Omar
Ph.D. (2005)
George Mason University
Associate Professor
Information & Computer Science Department (2005)
Dr. El-Maleh, Aiman Helmi
Mcgill University
Associate Professor
Computer Engineering Department (1998)

Dr. Elrabaa, Mohamed Elnasir Salaheddin
University of Waterloo
Associate Professor
Computer Engineering Department (2001)

Dr. El-Said, Ayman Sherif
University of Heidelberg
Associate Professor
Physics Department (2010)

Dr. El-Shaarawi, Maged Ahmed
Ph.D. (1974)
University of Leeds
Professor
Mechanical Engineering Department (1990)

Dr. Elshafei, Moustafa Ahmed
Ph.D. (1982)
Mcgill University
Professor
System Engineering Department (2003)

Dr. Elsharqawy, Mostafa Hamed Ahmed
Ph.D. (2008)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2010)
Dr. Eltayeb, Elgaily Ahmed Eltayb
Ph.D. (1987)
University of Exeter
Assistant Professor
Management & Marketing Department (2005)

Dr. Essa, Mohammad H.
Ph.D. (2008)
The Open University, UK
Instructor
Civil Engineering Department (2009)

Mr. Fahdel, Adel
Master (2014)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2014)

Dr. Fairag, Faisal Abdulkarim
Ph.D. (1998)
University of Pittsburgh
Associate Professor
Mathematics & Statistics Department (1987)

Dr. Faisal, Kanaan Abed
Ph.D. (1990)
University of Washington
Assistant Professor
Information & Computer Science Department (1980)

Dr. Faiz, Mohamed M.
Ph.D. (1992)
University of Illinois, Urbana-Champaign
Associate Professor
Physics Department (1994)
Dr. Fallatah, Yasser Ahmed
Florida Atlantic University
Assistant Professor
Accounting & MIS Department (1994)

Dr. Farahat, Ashraf Mohamed Samir
Ph.D. (2005)
Florida Institute of Technology
Assistant Professor
Preparatory Science & Engineering Program (2011)

Mr. Fernelius, Mark Aaron
Master (2007)
University of Southern Queensland
Lecturer
Preparatory English Program (2014)

Dr. Fettouhi, Mohammed Benyounes
Ph.D. (1993)
University Rennes 1
Associate Professor
Chemistry Department (1996)

Mr. Fletcher, Dominic Hugh
Master (1989)
University of Nottingham
Lecturer
Preparatory English Program (2012)

Mr. Fogarty, Michael Joseph
Bachelor + Certificate (1994)
University of Cambridge
Lecturer
Preparatory English Program (2001)
Mr. Foord, Keith Raymond
Master (2004)
University of Wollongong
Lecturer
Preparatory English Program (2011)

Dr. Forner, Wolfgang
Ph.D. (1985)
Friedrich Alexander University
Associate Professor
Chemistry Department (1997)

Dr. Frimpong, Kwabena
Ph.D. (2005)
University of Strathclyde
Assistant Professor
Management & Marketing Department (2014)

Dr. Fukhar-ud-din, Hafiz
Ph.D. (2007)
Tokyo Institute of Technology
Assistant Professor
Mathematics & Statistics Department (2012)

Dr. Furati, Khaled Mohammad
Duke University
Professor
Mathematics & Statistics Department (1985)

Mr. Furquan, Sarfraz Ahmed
Master (2009)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (2010)
Dr. Gajbhiye, Rahul Narayanrao
Ph.D. (2011)
Louisiana State University
Assistant Professor
Petroleum Engineering Department (2013)

Dr. Gandhidasan, Palanichamy
Ph.D. (1979)
Indian Institute of Technology
Professor
Mechanical Engineering Department (1992)

Mr. Garba, Ya'U Isa
Master (2004)
King Fahd University of Petroleum & Minerals
Lecturer
Computer Engineering Department (2001)

Mr. Garlington, Joseph E.
Master (2011)
Carson Newman University
Lecturer
Preparatory English Program (2013)

Dr. Gasem, Zuhair Mattoug Asad
Ph.D. (1999)
University of Virginia
Associate Professor
Mechanical Engineering Department (1989)

Dr. Gasmi, Khaled
Ph.D. (2005)
Universidad Complutense De Madrid
Assistant Professor
Physics Department (2009)
Mr. Gaylard, Robert Philip
Bachelor + Certificate (1989)
University of Wales
Instructor
Preparatory English Program (1997)

Dr. Ghaleb, Amin Ramadan
Ph.D. (1993)
University of Wales
Lecturer
Preparatory Science & Engineering Program (1992)

Mr. Ghannam, Ayman Akram Hussein
Master (1997)
University of Jordan
Lecturer
Physics Department (1999)

Dr. Ghouti, Lahouari
Ph.D. (1997)
Queen'S University of Belfast
Assistant Professor
Information & Computer Science Department (1997)

Mr. Gibson, Anthony
Master (1988)
University of Leeds
Lecturer
English Language Department (1988)

Dr. Gim, Tae-Hyoung (Tommy)
Ph.D. (2013)
Georgia Institute of Technology
Assistant Professor
City & Regional Planning Department (2014)
Dr. Gondal, Mohammad Ashraf
Ph.D. (1983)
University of Bonn
Professor
Physics Department (1991)

Mr. Gowlett, Gerald D.
Master (2001)
Simon Fraser University
Lecturer
Preparatory English Program (2014)

Mr. Graham, Angus Alastair
Master (1993)
Heriot-Watt University
Lecturer
English Language Department (2014)

Mr. Graham, Ian Michael
Master (1985)
University of Surrey
Lecturer
Preparatory English Program (2009)

Mr. Gray, John Andrew
Master (1987)
University of Canterbury
Lecturer
Preparatory English Program (2001)

Mr. Green, Paul David
Master (1999)
Durham University
Lecturer
Preparatory English Program (2011)
Dr. Habib, Mohamed Abdel-Aziz Mostafa
Ph.D. (1980)
Imperial College
Professor
Mechanical Engineering Department (1997)

Dr. Habiballah, Ibrahim Omar A
Ph.D. (1993)
University of Waterloo
Associate Professor
Electrical Engineering Department (1984)

Dr. Haider, Muhammad Baseer
Ph.D. (2005)
Ohio University
Assistant Professor
Physics Department (2009)

Dr. Halim, Amr Mohamed Said Abdel
University of Southampton
Assistant Professor
Accounting & MIS Department (2007)

Dr. Hamdan, Abdalla Jafar Salman
Ph.D. (1986)
University of California Irvine
Assistant Professor
Chemistry Department (1978)

Mr. Hamilton, John C.
Bachelor + Certificate (2006)
University of California Berkeley
Instructor
English Language Department (2006)
Dr. Hammi, Oualid
Ph.D. (2008)
University of Calgary
Assistant Professor
Electrical Engineering Department (2010)

Mr. Hands, Francis Michael
Master (1993)
University of London
Lecturer
Preparatory English Program (1998)

Mr. Haque, Sarwar Morshedul
Master (2008)
University of Greenwich, London
Lecturer
Preparatory Science & Engineering Program (2014)

Dr. Hariri, Mustafa Mohammad Mustafa
South Dakota School of Mines & Technology
Associate Professor
Geosciences Department (1988)

Dr. Haroun, Ahmed Elamin
Ph.D. (1992)
Oklahoma State University
Associate Professor
System Engineering Department (2012)

Dr. Harrabi, Khalil Ben Ali
Ph.D. (2001)
University Pierre and Marie Curie Paris VI, Ecole
Associate Professor
Physics Department (2009)
Mr. Hartley, Michael Stephen James
Master (1996)
University of Leeds
Lecturer
English Language Department (2010)

Mr. Hasan, Masudul
Master (1993)
King Fahd University of Petroleum & Minerals
Lecturer
Computer Engineering Department (1993)

Dr. Hasnain, Moataz Bellah Muhammad
Ph.D. (1993)
Alexandria University
Lecturer
Physical Education Department (1989)

Mr. Hassan, Hassan Bin Abdulkareem
Master (1991)
Adrigown State University
Lecturer
Physical Education Department (2001)

Dr. Hassan, Syed Fida
National University of Singapore
Associate Professor
Mechanical Engineering Department (2008)

Dr. Hassan, Mahir
Queen'S University
Assistant Professor
Mechanical Engineering Department (2010)
Dr. Hassan, Mohammed Rafiul
Ph.D. (2007)
University of Melbourne
Assistant Professor
Information & Computer Science Department (2010)

Dr. Hassan, Essam Eldin Mohammad
Ph.D. (1978)
University of Manitoba
Associate Professor
Electrical Engineering Department (1979)

Dr. Hassanain, Mohammad Ahmad
University of British Columbia
Associate Professor
Architecture Engineering Department (2002)

Dr. Hassine, Jameleddine
Ph.D. (2008)
Concordia University
Assistant Professor
Information & Computer Science Department (2010)

Dr. Hawwa, Muhammad
Ph.D. (1990)
University of Cincinnati
Associate Professor
Mechanical Engineering Department (2003)

Mr. Heineck, Maxwell James
Master (2010)
National Chiao Tung University
Lecturer
Management & Marketing Department (2010)
Mr. Hennessey, Stephen Robert
Master (1982)
Columbia University
Lecturer
Preparatory English Program (2004)

Mr. Hillmer, Steve Mark
Bachelor (1987)
Gustavus Adolphus College
Instructor
Preparatory English Program (2008)

Mr. Hind, Timothy Edward
Bachelor (2002)
University of Liverpool
Instructor
Preparatory English Program (2010)

Mr. Horn, Roger Alan
Master (1995)
Aston University, Birmingham
Lecturer
English Language Department (1995)

Dr. Hossain, Mohammed Enamul
Ph.D. (2008)
Dalhousie University
Associate Professor
Petroleum Engineering Department (2009)

Dr. Hossain, Mohammad Mozahar
Ph.D. (2007)
University of Western Ontario
Associate Professor
Chemical Engineering Department (2009)
Mr. House, Nicholas James
Bachelor (1996)
University of Manchester
Instructor
Preparatory English Program (2007)

Dr. Howsawi, Abdulrahman Abduljabbar Saleh
Ph.D. (2000)
Al-Imam Mohammed Bin Saud Islamic University
Assistant Professor
Islamic & Arabic Studies Department (1988)

Dr. Hrahsheh, Fawaz Yousuf Obaid
Ph.D. (2013)
Missouri University of Science & Technology
Assistant Professor
Physics Department (2014)

Mr. Hudson, Brett Herbert
Master (2010)
California State University
Lecturer
Preparatory English Program (2013)

Dr. Hughes, Gerraint Wyn
Ph.D. (1976)
University of Wales
Adjunct Professor
Geosciences Department (2000)

Mr. Hussain, Akhtar
Master (2009)
National University of Science & Technology
Lecturer
Preparatory Science & Engineering Program (2011)
Mr. Hussaini, Sayed Farhan Ahmed
Master (2003)
University of Waterloo
Lecturer
Preparatory Science & Engineering Program (2011)

Dr. Hussein, Alaael-Din
University of Waterloo
Assistant Professor
Electrical Engineering Department (2003)

Dr. Hussein, Ibnelwaleed Ali
Ph.D. (1999)
University of Alberta
Professor
Chemical Engineering Department (2000)

Dr. Hussein, Abdelrazzaq Haj Abdelrahim A.
Ph.D. (1981)
Al-Azhar University
Professor
Islamic & Arabic Studies Department (2002)

Mr. Ibeid, Ali Azmi
Bachelor (1991)
University of Illinois, Chicago
Lecturer
Physical Education Department (1998)
Dr. Ibrahim, Ahmed Shawky
Ph.D. (1982)
Assiut University
Associate Professor
Mathematics & Statistics Department (1972)

Dr. Ibrahim, Abdullah Omar Hajj
Ph.D. (1997)
Um Al-Qura University
Professor
Islamic & Arabic Studies Department (1998)

Dr. Ibrahim, Syed
Osmania University
Lecturer
Physical Education Department (2008)

Mr. Ibrahim, Naji Fahmi Mohammad
Master (1995)
University of Jordan
Lecturer
Preparatory Math Program (2009)

Dr. Ibrahim, Ahmed
Ph.D. (2010)
University of Missouri
Assistant Professor
Civil Engineering Department (2014)

Dr. Ibrir, Salim
Ph.D. (2000)
Paris Sud University
Associate Professor
Electrical Engineering Department (2013)
Dr. Imam, Mohammad Raziq Al
Ph.D. (2008)
University of Pennsylvania
Assistant Professor
Chemistry Department (2009)

Mr. Imam, Qaiser
Master (1984)
Wayne State University
Lecturer
Preparatory Math Program (2010)

Dr. Iraqi, Mohammed Khalil Ibrahim
Nagoya University
Associate Professor
Aerospace Engineering Department (2011)

Dr. Isab, Anvar Husein
Ph.D. (1978)
University of London
Professor
Chemistry Department (1981)

Mr. Islam, Mohammed Shahidul
Master (1981)
Harvard University
Lecturer
Accounting & MIS Department (1990)

Mr. Islam, Mohammad Azadul
Master (1987)
Massachusetts Institute of Technology
Lecturer
Physics Department (1988)
Mr. Ismail, Ahmed Daud
Master (1985)
New Mexico State University
Lecturer
English Language Department (1989)

Mr. Jabbar, Abdul Aleem Bangalore
Master (1989)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1989)

Mr. Jameson, Jeffrey Samuel Thomas James
Master (1975)
University of Manchester
Lecturer
English Language Department (1995)

Dr. Jiang, Guoping
Ph.D. (2008)
City University of Hong Kong
Assistant Professor
General Studies Department (2009)

Mr. Johar, Umar Muhammed
Master (1993)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (1993)
Mr. Johnston, David C.
Bachelor (1994)
Concordia University
Lecturer
Preparatory English Program (1998)

Mr. Jones, David Robert
Bachelor (2006)
Griffith University
Instructor
Preparatory English Program (2009)

Mr. Joyner, Edward
Master (2007)
University of Southern Queensland
Lecturer
Management & Marketing Department (2004)

Dr. Kabbaj, Salah-Eddine
Ph.D. (1988)
University of Lyon
Professor

Dr. Kadi, Abdmalek Bakar
Ph.D. (1983)
Al-Azhar University
Associate Professor
Islamic & Arabic Studies Department (1979)

Mr. Kafini, Mohammad Mustafa Mohammad
Master (2003)
King Fahd University of Petroleum & Minerals
Lecturer
Dr. Kaka, Sanlinn Isma'il Ebrahim
Carleton University
Assistant Professor
Geosciences Department (2007)

Dr. Kaminski, Michael Anthony
Ph.D. (1987)
Massachusetts Institute of Technology
Associate Professor
Geosciences Department (2010)

Dr. Kanniyan, Abdussalam
Ph.D. (2007)
University of Calicut
Lecturer
Physical Education Department (2010)

Dr. Kara, Abdul Qadar
Ph.D. (2011)
George Mason University
Assistant Professor
System Engineering Department (2012)

Dr. Kassas, Mahmoud
Ph.D. (1991)
Vanderbilt University
Associate Professor
Electrical Engineering Department (1994)

Dr. Kawde, Abdel-Nasser Metwally Aly
New Mexico State University
Associate Professor
Chemistry Department (2007)
Dr. Kayal, Aymen Abdulmajeed Abdullah
Ph.D. (1997)
George Washington University
Associate Professor
Management & Marketing Department (1991)

Dr. Kazmi, Azhar
Kurukshetra University
Professor
Management & Marketing Department (2006)

Mr. Kearney, Denis Christopher
Bachelor + Certificate (1978)
University College, Galway
Instructor
Preparatory English Program (2006)

Dr. Khaiyat, Sami Abdulrahman Ismail
Ph.D. (1994)
Texas A&M University
Assistant Professor
Architecture Engineering Department (1986)

Dr. Khaled, Mazen Mohammad
Ph.D. (1992)
University of Alabama
Associate Professor
Chemistry Department (1994)

Dr. Khalifallah, Adel
Ph.D. (2001)
University of Joseph Fourier
Assistant Professor
Mathematics & Statistics Department (2011)
Mr. Khalid, Yasir Mohamed
Master (2012)
Heriot-Watt University
Lecturer
Mathematics & Statistics Department (2014)

Dr. Khalifa, Atia Esmaeil Atia
Ph.D. (2009)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2009)

Dr. Khalil, Amjad
Ph.D. (1994)
Illinois Institute of Technology
Associate Professor
Biology Department (2006)

Dr. Khaliq, Abdul
Indian Institute of Technology
Associate Professor
Mechanical Engineering Department (2013)

Dr. Khan, Shafique Mohammad Ahmad
Ph.D. (1996)
Washington State University
Associate Professor
Mechanical Engineering Department (2006)

Dr. Khan, Hassan Saeed
Ph.D. (2012)
Politecnico di Milano
Lecturer
Architecture Engineering Department (2014)
Mr. Khan, Shamsuddin
Master (1987)
King Fahd University of Petroleum & Minerals
Lecturer
Mathematics & Statistics Department (1992)

Dr. Khan, Zafarullah
Ph.D. (1985)
University of Illinois, Urbana-Champaign
Professor
Mechanical Engineering Department (1987)

Dr. Khan, Israr Sardar
Ph.D. (1982)
Kanpur University
Instructor
Accounting & MIS Department (1992)

Dr. Khan, Abdul Rahim
Ph.D. (1983)
University of Wales
Professor
Mathematics & Statistics Department (1997)

Dr. Khanday, Firdous A.
Indian Institute of Technology
Assistant Professor
Biology Department (2014)

Dr. Khathlan, Abdulrahman A.
Ph.D. (1987)
Stanford University
Assistant Professor
Civil Engineering Department (1980)
Dr. Khayyat, Ahmad M. Ghazali
Ph.D. (2013)
Queen’s University
Assistant Professor
Computer Engineering Department (2002)

Dr. Khiari, Fattah Z.
Ph.D. (1987)
University of Michigan
Associate Professor
Physics Department (1989)

Dr. Khogali, Hisham Osman
Ph.D. (1987)
University of London
Assistant Professor
General Studies Department (2006)

Dr. Khulief, Yehia Abel
Ph.D. (1985)
University of Illinois, Urbana-Champaign
Professor
Mechanical Engineering Department (1988)

Dr. Kim, Daeung
Ph.D. (2013)
Virginia Polytechnic Institute and State University
Assistant Professor
Architecture Engineering Department (2014)

Mr. King, Lance
Bachelor (1986)
Manchester Metropolitan University
Instructor
English Language Department (2009)
Mr. Knight, Michael Stewart
Master (1985)
University of Cambridge
Lecturer
Preparatory English Program (1998)

Mr. Knott, David Lee
Bachelor (1998)
University of Virginia
Instructor
Preparatory English Program (2013)

Dr. Korvin, Gabor
Ph.D. (1979)
University of Heavy Industry
Professor
Geosciences Department (1994)

Dr. Kousa, Maan Abdulgader
Ph.D. (1994)
University of London
Associate Professor
Electrical Engineering Department (1988)

Dr. Kriel, Hendrik Petrus
Ph.D. (1992)
University of Port Elizabeth
Lecturer
Preparatory English Program (2007)

Dr. Kunwar, Shankar
Ph.D. (2009)
Boston College
Assistant Professor
Physics Department (2009)
Dr. Kurdi, Ammr Khaled Abdulfatah
Ph.D. (2010)
University of North Texas
Assistant Professor
Accounting & MIS Department (2001)

Mr. Lake, Morgan Wolfgang
Master (1983)
University of Utah
Lecturer
Preparatory English Program (2010)

Dr. Landolsi, Mohamed Adnan
Ph.D. (1996)
University of Michigan
Associate Professor
Electrical Engineering Department (2001)

Dr. Laoui, Tahar
Ph.D. (1990)
University of Washington
Professor
Mechanical Engineering Department (2008)

Dr. Laradji, Abdallah
Ph.D. (1986)
University of Sheffield
Professor
Mathematics & Statistics Department (1990)
Mr. Lavelle, Patrick Martin Gerard
Master (2010)
Bristol University
Lecturer
Preparatory English Program (2012)

Mr. Lawrie, Ross
Master (2013)
University of Stirling
Lecturer
English Language Department (2014)

Mr. Lewis, Yousif John
Bachelor (1978)
Lancaster University
Instructor
Preparatory English Program (2009)

Dr. Ifarabi, Sharif
Ph.D. (1982)
Washington University
Professor
Civil Engineering Department (1975)

Dr. Lo, Assane
Ph.D. (2007)
University of Arizona
Assistant Professor
Mathematics & Statistics Department (2007)
Dr. I-Zahrani, Mohammad A.
Colorado State University
Associate Professor
Civil Engineering Department (1987)

Dr. Maalej, Nabil Mohamed Ahmed
Ph.D. (1994)
University of Wisconsin, Madison
Associate Professor
Physics Department (2001)

Mr. MacDonald, John Ross
Bachelor (1979)
University of Manitoba
Instructor
Preparatory English Program (2009)

Dr. Madani, Haider Hussain
Ph.D. (1996)
Brunel University
Associate Professor
Accounting & MIS Department (1985)

Dr. Maghrabi, Aimen Abdulrahman
Ph.D. (1997)
Georgetown University
Assistant Professor
Management & Marketing Department (1987)

Dr. Magliveras, Simeon Spyros
Ph.D. (2010)
Durham University
Assistant Professor
General Studies Department (2014)
Dr. Mahdi, Mohamed Osman Shereif
Ph.D. (2005)
University of Aberdeen
Assistant Professor
Management & Marketing Department (2009)

Mr. Mahgoub, Kamal Eldin Ali
Master (1981)
University of Strathclyde
Lecturer
Chemical Engineering Department (1999)

Dr. Mahmood, Muzafferuddin
Ph.D. (2001)
University of Sydney
Lecturer
Mechanical Engineering Department (1984)

Dr. Mahmood, Sajjad
Ph.D. (2007)
La Trobe University
Assistant Professor
Information & Computer Science Department (2008)

Dr. Mahmoud, Muhammad Yahya
Ph.D. (2013)
Carleton University
Assistant Professor
Computer Engineering Department (2004)

Dr. Mahmoud, Ashraf Sharif Hasan
Ph.D. (1997)
Carleton University
Associate Professor
Computer Engineering Department (2002)
Dr. Mahmoud, Mohamed Ahmed Nasr Eldin
Ph.D. (2011)
Texas A&M University
Assistant Professor
Petroleum Engineering Department (2011)

Dr. Mahmoud, Magdi Sadek Mostafa
Ph.D. (1974)
Cairo University
Professor
System Engineering Department (2007)

Mr. Mahnashi, Yaqub Alhussain Yahya
Bachelor (2008)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (2009)

Dr. Makkawi, Mohammad Bin Hussain
Ph.D. (1998)
Colorado State University
Associate Professor
Geosciences Department (1987)

Mr. Malik, Amir Joseph
Master (2010)
University of Missouri
Lecturer
Preparatory Science & Engineering Program (2011)

Mr. Malik, Musawar Amin
Master (1998)
University of Alberta
Lecturer
Mathematics & Statistics Department (1998)
Dr. Malkawi, Rezqallah Hasan
Ph.D. (1997)
King Fahd University of Petroleum & Minerals
Assistant Professor
Preparatory Science & Engineering Program (2006)

Mr. Mann, Nicholas Michael
Bachelor (1977)
University of Greenwich
Instructor
Preparatory English Program (2010)

Dr. Mansoor, Saad Bin
Ph.D. (2011)
King Fahd University of Petroleum & Minerals
Assistant Professor
Mechanical Engineering Department (2002)

Dr. Mansour, Rached Ben
Ph.D. (1993)
Purdue University
Associate Professor
Mechanical Engineering Department (2000)

Dr. Mansour, Mourad Mohamed Habib
University of Tsukuba
Assistant Professor
Management & Marketing Department (2004)

Mr. Marquis, Jonathon Charles
Bachelor (1991)
University of Technology, Sydney
Instructor
English Language Department (2010)
Mr. Marsh, Joseph
Bachelor (1998)
California State University Chico
Instructor
Preparatory English Program (2014)

Dr. Masoud, Ahmad Abdallah
Queen'S University
Associate Professor
Electrical Engineering Department (2001)

Dr. Masoudi, Husain Mohammad
University of Glasgow
Professor
Electrical Engineering Department (1986)

Dr. Matzin, Razali
Ph.D. (1993)
Florida State University
Associate Professor
Management & Marketing Department (2004)

Dr. Maung, Than Htun
Ph.D. (1994)
King Fahd University of Petroleum & Minerals
Associate Professor
Chemistry Department (1989)

Dr. Mazumder, Mohammad Abu Jafar
Ph.D. (2009)
McMaster University
Assistant Professor
Chemistry Department (2012)
Mr. McCarthy, Denis Vincent
Master (2009)
University of Manchester
Lecturer
Preparatory English Program (2010)

Mr. McKay, Gordon James Price
Bachelor + Certificate (1977)
University of London
Instructor
Preparatory English Program (2007)

Dr. Mekid, Samir Nadir
Ph.D. (1994)
University of Technology At Compiegne
Professor
Mechanical Engineering Department (2008)

Mr. Mekki, Mogtaba Bakheet
Master (1999)
Sudan University of Science & Technology
Lecturer
Physics Department (2002)

Dr. Mekki, Abdelkarim Mustafa Cherif
Ph.D. (1998)
University of Warwick
Associate Professor
Physics Department (1990)

Mr. Mellouli, Moenes
Master (2009)
University of Missouri in Columbia
Lecturer
Mathematics & Statistics Department (2014)
Dr. Merah, Nesar Ammar Salah
University of Montreal
Professor
Mechanical Engineering Department (1996)

Mr. Meraj, Ismail
Master (2013)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2003)

Dr. Merdad, Hesham Jamil
Ph.D. (2012)
University of New Orleans
Assistant Professor
Finance & Economics Department (2003)

Dr. Mesbah, Wessam Ali
Ph.D. (2008)
McMaster University
Assistant Professor
Electrical Engineering Department (2010)

Dr. Messaoudi, Salim Aissa Salah
Ph.D. (1989)
Carnegie Mellon University
Professor
Mathematics & Statistics Department (1997)

Dr. Mezghani, Khaled Saleh Mahmoud
Ph.D. (1996)
University of Tennessee
Associate Professor
Mechanical Engineering Department (1998)
Dr. Miah, Fazlul Hoque
Ph.D. (2001)
Wayne State University
Assistant Professor
Finance & Economics Department (2011)

Dr. Mimouni, Abdeslam Achour
University of Fez
Professor

Mr. Mlaih, Esam Abdallah
Master (2005)
Texas A&M University
Lecturer
Information & Computer Science Department (2000)

Dr. Moftah, Aly Aly
Ph.D. (1988)
Ein Shams University
Associate Professor
General Studies Department (2004)

Dr. Mohamed, Mohamed Makkawi
Ph.D. (1998)
Golden Gate University
Lecturer
Management & Marketing Department (2004)

Dr. Mohammed, Sabri Abdullah Mahmoud
Ph.D. (1987)
University of Bradford
Professor
Information & Computer Science Department (2005)
Dr. Mohammed, Sadiq Sait
Ph.D. (1986)
King Fahd University of Petroleum & Minerals
Professor
Computer Engineering Department (1987)

Mr. Mohammed, Mohammed Hamdan Hashem
Bachelor (1990)
Alexandria University
Lecturer
Physical Education Department (1999)

Mr. Mohammed, Akram Reda Morsy Gomah
Master (2005)
Cairo University
Lecturer
Preparatory Science & Engineering Program (2008)

Dr. Mohammed, Salahadin Adem
Monash University
Assistant Professor
Information & Computer Science Department (2003)

Dr. Mohandes, Mohamed
Ph.D. (1993)
Purdue University
Associate Professor
Electrical Engineering Department (1997)

Dr. Mokheimer, Esmail Mohamed Ali
Ph.D. (1996)
King Fahd University of Petroleum & Minerals
Professor
Mechanical Engineering Department (1996)
Mr. Moore, Daniel Ben
Bachelor (2001)
University of Liverpool
Lecturer
Preparatory English Program (2013)

Mr. Moore, David Harold
Master (1992)
University of Oxford
Lecturer
Preparatory English Program (2003)

Dr. Morsy, Mohammed Ali
Ph.D. (1993)
King Fahd University of Petroleum & Minerals
Associate Professor
Chemistry Department (1989)

Mr. Mountjoy, Paul
Master (2007)
London South Bank University
Lecturer
Preparatory English Program (2007)

Dr. Mousa, Wail Abdul-Hakim
University of Leeds
Associate Professor
Electrical Engineering Department (2009)

Dr. Mubarak, Abdulmajeed Ebraheem
Durham University
Assistant Professor
Islamic & Arabic Studies Department (1997)
Dr. Mudawar, Muhamed Fawzi
Ph.D. (1993)
Syracuse University
Assistant Professor
Computer Engineering Department (2004)

Mr. Muhammad, Raashid
Master (1974)
University of Karachi
Lecturer
Physics Department (1982)

Mr. Muhammad, Said Abdallah
Master (1992)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1993)

Mr. Muhammad, Inam Ghulam Hasan
Master (1984)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1984)

Mr. Muhammadain, Abdulrahim Mahmoud
Master (1986)
King Fahd University of Petroleum & Minerals
Lecturer
Petroleum Engineering Department (1986)

Dr. Mujahid, Syed Naqeebuddin
Ph.D. (2013)
University of Florida
Assistant Professor
System Engineering Department (2014)
Dr. Muqaibel, Ali Hussein
Virginia Polytechnic Institute & State University
Associate Professor
Electrical Engineering Department (2003)

Dr. Musa, Musa Mohammed
Ph.D. (2007)
University of Georgia
Assistant Professor
Chemistry Department (2009)

Mr. Musabeh, Ali Abdullah
Master (2014)
Case Western Reserve University
Lecturer
Accounting & MIS Department (2014)

Dr. Musazey, Mohammed Saber
Ph.D. (1981)
North Carolina State University
Assistant Professor
Preparatory Science & Engineering Program (1981)

Dr. Mustafa, Muhammad Islam Shafiq
Ph.D. (2008)
King Fahd University of Petroleum & Minerals
Associate Professor
Mathematics & Statistics Department (2010)

Dr. Mustapha, Kassem Ahmad
University of New South Wales
Associate Professor
Dr. Mysorewala, Muhammad Faizan
Ph.D. (2008)
University of Texas, Arlington
Assistant Professor
System Engineering Department (2008)

Dr. Nagadi, Mahmoud Mohammad
Ph.D. (1992)
Duke University
Associate Professor
Physics Department (1979)

Mr. Nagy, Luqman Ronald
Master (1981)
University of British Columbia
Lecturer
English Language Department (1998)

Dr. Nahas, Nabil
Ph.D. (2008)
University of Laval, Quebec
Assistant Professor
System Engineering Department (2013)

Dr. Nahiduzzaman, Khondokar Mohammad
Ph.D. (2012)
Royal Institute of Technology, Sweden
Assistant Professor
City & Regional Planning Department (2008)

Dr. Nair, Sudhakumar Janardhanan
Ph.D. (1992)
I.I.T. Madras University
Assistant Professor
Architecture Engineering Department (2014)
Dr. Nakla, Meamer El
University of Ottawa
Associate Professor
Mechanical Engineering Department (2008)

Dr. Naqvi, Akhtar Abbas
Ph.D. (1980)
University of Karlsruhe
Professor
Physics Department (1980)

Dr. Nasser, Ibraheem Mahmoud Ahmad
Ph.D. (1985)
University of Connecticut
Professor
Physics Department (1988)

Mr. Nelson, Timothy Andrew
Bachelor + Diploma (1993)
University of British Columbia
Instructor
English Language Department (2002)

Dr. Niazi, Mahmood Khan
Ph.D. (2005)
University of Technology, Sydney
Associate Professor
Information & Computer Science Department (2011)
Mr. Nicholas, Paul Arthur Bernard
Bachelor + Certificate (1988)
University of London
Lecturer
English Language Department (1997)

Dr. Nouari, Saheb
National University of Malaysia
Associate Professor
Mechanical Engineering Department (2007)

Mr. Nuruzzaman, Mohammad
Master (1998)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (1995)

Dr. Nzila, Alexis
University of Science & Techniques of Montpellier
Associate Professor
Biology Department (2013)

Dr. Omar, Hafidz
University of Iowa
Associate Professor

Dr. Osais, Yahya Ismail
Ph.D. (2010)
Carleton University
Assistant Professor
Computer Engineering Department (2000)
Dr. Osman, Essam Eid Fahmy
Ph.D. (2005)
Cairo University
Associate Professor
Islamic & Arabic Studies Department (2007)

Dr. Osman, Mojahid Faroug Saeed
Ph.D. (2010)
North Carolina State University
Assistant Professor
System Engineering Department (2010)

Dr. Ouakad, Hassen
Ph.D. (2010)
State University of New York
Assistant Professor
Mechanical Engineering Department (2011)

Dr. Oweimreen, Ghassan Andrawes Yousef
Ph.D. (1977)
Georgetown University
Professor
Chemistry Department (1978)

Mr. Owen, Samuel Hassan
Bachelor (2011)
Wayne State University
Instructor
Preparatory English Program (2014)

Mr. Oxley, Daniel
Bachelor + Certificate (1995)
University of Cambridge
Instructor
Preparatory English Program (2006)
Mr. Paddock, Simon Tobias
Bachelor + Certificate (1995)
Trinity College
Lecturer
Preparatory English Program (2003)

Dr. Pashah, Sulaiman Sikandar Qadir
Ph.D. (2007)
Universite Claude Bernard Lyon I
Assistant Professor
Mechanical Engineering Department (2011)

Mr. Patel, Faheemuddin
Master (2006)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (2007)

Mr. Pearson, Bruce Victor
Master (1994)
University of Colorado
Lecturer
Preparatory English Program (2013)

Mr. Pearson, Keith Thomas
Diploma (1995)
University of Surrey
Lecturer
English Language Department (2002)

Dr. Pirim, Harun
Ph.D. (2011)
Mississippi State University
Assistant Professor
System Engineering Department (2012)
Mr. Pollard, John Douglas Edward
Master (1986)
Durham University
Lecturer
English Language Department (2012)

Mr. Poores, Justin Andrew
Bachelor (1997)
University of Windsor
Instructor
Preparatory English Program (2011)

Mr. Powell, James Elwood
Master (1982)
University of California Irvine
Lecturer
Preparatory English Program (2003)

Mr. Qahwash, Ehab Abdel-Latif Ahmad
Master (2004)
King Fahd University of Petroleum & Minerals
Lecturer
Accounting & MIS Department (2006)

Dr. Qazi, Muhammad Jameel
Ph.D. (2005)
Kobe University
Assistant Professor
Management & Marketing Department (2007)

Dr. Qurban, Mohammad Ali Bin Bahauddin
Ph.D. (2009)
University of Southampton
Assistant Professor
Geosciences Department (2010)
Dr. Qureshi, Khurram Karim
The Hong Kong Polytechnic University
Assistant Professor
Electrical Engineering Department (2009)

Dr. Raad, Muhammad Wasim
Ph.D. (2005)
King Fahd University of Petroleum & Minerals
Lecturer
Computer Engineering Department (1986)

Dr. Rabaan, Habib Ali Habib
Ph.D. (1994)
University of Pittsburgh
Associate Professor
Physical Education Department (2009)

Dr. Ragheb, Hassan Aly
Ph.D. (1987)
University of Manitoba
Professor
Electrical Engineering Department (1989)

Mr. Raharja, Iputu Danu
Master (1996)
Conventry University, UK
Lecturer
Preparatory Science & Engineering Program (2012)

Dr. Rahim, Mohammed Abdur
Ph.D. (1981)
University of Windsor
Professor
System Engineering Department (2011)
Dr. Rahman, Fazal ur
Ph.D. (2012)
University of Manitoba
Assistant Professor
Preparatory Science & Engineering Program (2014)

Dr. Rahman, Muhammad Tauhidur
Ph.D. (2009)
University of Oklahoma
Assistant Professor
City & Regional Planning Department (2010)

Dr. Ramadan, Emad Yehia Ahmed
Ph.D. (2008)
Old Dominion University
Assistant Professor
Information & Computer Science Department (2011)

Dr. Ramady, Mohamed Aly
Ph.D. (1979)
University of Leicester
Associate Professor
Finance & Economics Department (2002)

Dr. Rao, Saleem Ghaffar
Ph.D. (2005)
Florida State University
Assistant Professor
Physics Department (2009)

Dr. Ratrout, Nedal T.
Ph.D. (1989)
Michigan State University
Professor
Civil Engineering Department (1983)
Mr. Raza, Muhammad Kamran
Master (1998)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1996)

Dr. Razzak, Shaikh Abdur
Ph.D. (2009)
University of Western Ontario
Assistant Professor
Chemical Engineering Department (2010)

Dr. Redhwi, Halim Bin Hamid Waseem Hamid
Ph.D. (1988)
City University London
Professor
Chemical Engineering Department (1978)

Dr. Riaz, Muhammad
Ph.D. (2008)
University of Amsterdam
Associate Professor
Mathematics & Statistics Department (2010)

Mr. Robben, Paul Frederick
Master (2008)
Thammasat University
Lecturer
Preparatory English Program (2011)

Dr. Rowaihy, Hosam Khaled
Ph.D. (2009)
Pennsylvania State University
Assistant Professor
Computer Engineering Department (2000)
Mr. Rycroft, Alan Robert
Master (1994)
Thames Valley University, London
Lecturer
Preparatory English Program (2011)

Dr. Sadi, Muhammad Asad
Ph.D. (1994)
Virginia Polytechnic Institute & State University
Professor
Management & Marketing Department (2000)

Dr. Saeed, Farooq
Ph.D. (1999)
University of Illinois, Urbana-Champaign
Associate Professor
Aerospace Engineering Department (2003)

Dr. Saeed, Muhammad
Ph.D. (2012)
University of York
Assistant Professor
General Studies Department (2014)

Dr. Sahin, Ahmet Ziyaettin
Ph.D. (1988)
University of Michigan
Professor
Mechanical Engineering Department (1989)

Dr. Said, Syed Ahmad Mohammad
Ph.D. (1986)
University of Tennessee
Professor
Mechanical Engineering Department (1986)
Dr. Saif, Abdul-Wahid Abdul-Aziz
Ph.D. (1996)
University of Leicester
Associate Professor
System Engineering Department (1997)

Mr. Saifullah, Khaled
Master (1988)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Math Program (1988)

Dr. Saleh, Khairul
Ph.D. (2005)
University of Groningen
Assistant Professor
Mathematics & Statistics Department (2007)

Mr. Saleh, Mohammad Farah Ismail
Master (1999)
Yarmouk University
Lecturer

Mr. Saleh, Haitham Hassan
Bachelor (2008)
King Fahd University of Petroleum & Minerals
Lecturer
System Engineering Department (2008)

Dr. Saleh, Tawfik
Ph.D. (2012)
King Fahd University of Petroleum & Minerals
Assistant Professor
Chemistry Department (2012)
Dr. Salem, Ahmad Fathy Abdullah Ahmed
Ph.D. (2009)
Al-Azhar, University, Egypt
Lecturer
Physics Department (2000)

Dr. Samad, Mohammed Abdul
Ph.D. (2011)
National University of Singapore
Assistant Professor
Mechanical Engineering Department (2012)

Mr. Sankaran, Jayakanthan
Master (2002)
Bharathidasan University
Lecturer
Preparatory Science & Engineering Program (2011)

Dr. Sarhan, Mahmoud Abdulghani
Ph.D. (1977)
University of New Mexico
Associate Professor
Mathematics & Statistics Department (1970)

Dr. Scheifinger, Heinz
University of Warwick
Assistant Professor
General Studies Department (2014)

Mr. Selmi, Hazem Helmi Muhareb
Master (2000)
King Fahd University of Petroleum & Minerals
Lecturer
Computer Engineering Department (2001)
Dr. Sendi, Hasan Ibn Khaled Hassan
Ph.D. (2001)
Cairo University
Associate Professor
Islamic & Arabic Studies Department (1994)

Mr. Shafi, Ahmar
Master (1999)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (1997)

Dr. Shaikh, Abdullah Abed
University of Notre Dame
Professor
Chemical Engineering Department (1977)

Dr. Shamsuzzoha, Mohammad
Ph.D. (2007)
Yeungnam University
Assistant Professor
Chemical Engineering Department (2010)

Dr. Sharawi, Mohammad Said
Oakland University
Associate Professor
Electrical Engineering Department (2009)

Dr. Shareef, Obaid Saad Al
Ph.D. (1996)
University of Manchester
Assistant Professor
Management & Marketing Department (1991)
Mr. Sharif, Muhammad Nadeem
Master (2006)
University of Waterloo
Lecturer
Preparatory Science & Engineering Program (2010)

Mr. Sharqawi, Husam Khaled Khalil
Master (1998)
University of Malta
Lecturer
Preparatory Math Program (2001)

Dr. Shash, Ali Ali Hassen
Ph.D. (1988)
University of Texas, Austin
Professor
Construction Engineering Management (1982)

Dr. Shaukat, Mian Mobeen
Ph.D. (2012)
University of Michigan
Assistant Professor
Mechanical Engineering Department (2013)

Dr. Shawabkeh, Reyad Awwad Khalaf
Ph.D. (1998)
New Mexico State University
Professor
Chemical Engineering Department (2007)

Mr. Shawush, Mazen Harbi
Master (2014)
University of Florida
Lecturer
Accounting & MIS Department (2014)
Mr. Shehadeh, Yaqoub Mustafa
Master (1992)
King Fahd University of Petroleum & Minerals
Lecturer
Mathematics & Statistics Department (2013)

Mr. Shehzad, Farrukh
Master (2014)
King Fahd University of Petroleum & Minerals
Lecturer
Chemical Engineering Department (2014)

Dr. Sheikh, Sharif Iqbal Mitu
Ph.D. (1996)
University of Manchester
Associate Professor
Electrical Engineering Department (1998)

Dr. Sheikh, Anwar Khalil
Ph.D. (1978)
Michigan Technological University
Professor
Mechanical Engineering Department (1979)

Dr. Sheltami, Tarek Rahil
Queen'S University
Associate Professor
Computer Engineering Department (2004)

Dr. Shuaib, Abdelrahman Nasr
Ph.D. (1980)
University of Wisconsin, Madison
Professor
Mechanical Engineering Department (1980)
Dr. Shuja, Shahzada Zaman
Ph.D. (1998)
King Fahd University of Petroleum & Minerals
Associate Professor
Mechanical Engineering Department (1998)

Dr. Siddiqui, Mohsin Khalid
Ph.D. (2008)
University of Texas, Austin
Assistant Professor
Construction Engineering Management (2008)

Dr. Siddiqui, Junaid Abdul Wahid
Ph.D. (2014)
Purdue University
Assistant Professor
Preparatory Science & Engineering Program (2014)

Dr. Siddiqui, Mohammad Nahid
Ph.D. (1997)
Heriot Watt University
Associate Professor
Chemistry Department (1985)

Dr. Siddiqui, Khawar Sohail
Ph.D. (1990)
Imperial College London
Assistant Professor
Biology Department (2014)

Mr. Silke, William Godot
Master (1993)
Trinity College Dublin
Lecturer
Preparatory English Program (2011)
Mr. Sliwa, Jerzy Stanislaw
Bachelor (1986)
University of Central England
Lecturer
Preparatory English Program (2004)

Dr. Smii, Boubaker Abdelhafid Omar
University of Bonn
Assistant Professor
Mathematics & Statistics Department (2008)

Mr. Smith, David George
Bachelor + Diploma (1986)
Trinity College
Instructor
Preparatory English Program (2001)

Mr. Snow, David
Bachelor (1982)
University of Essex
Instructor
Preparatory English Program (2012)

Mr. Snyman, Sarel Van Rooy
Bachelor + Certificate (2000)
University of Cambridge
Instructor
Preparatory English Program (2002)

Dr. Sohail, Mohammed Sadiq
Ph.D. (1991)
Agra University
Professor
Management & Marketing Department (2002)
Dr. Sondaal, Tiest Maarten
Ph.D. (2012)
University of Cincinnati
Assistant Professor
General Studies Department (2013)

Dr. Sorour, Sameh
Ph.D. (2011)
University of Toronto
Assistant Professor
Electrical Engineering Department (2013)

Dr. Sorour, Ahmad Asaad
Ph.D. (2014)
McGill University
Assistant Professor
Mechanical Engineering Department (2014)

Dr. Sultan, Abdullah Saad
Ph.D. (2009)
Texas A&M University
Assistant Professor
Petroleum Engineering Department (2002)

Mr. Sultan, Muhammad Saleem Safdar
Master (2012)
King Fahd University of Petroleum & Minerals
Lecturer
Preparatory Science & Engineering Program (2012)

Dr. Sunar, Mehmet Vehbi Mehmet
Ph.D. (1993)
Purdue University
Associate Professor
Mechanical Engineering Department (1994)
Dr. Talet, Amine Nehari
University of Tlemcen
Lecturer
Accounting & MIS Department (2001)

Dr. Talha, Mohammad
Ph.D. (1988)
Aligarh Muslim University
Associate Professor
Accounting & MIS Department (2007)

Mr. Tasadduq, Noman Ali
Master (1998)
King Fahd University of Petroleum & Minerals
Lecturer
Electrical Engineering Department (1995)

Dr. Tatar, Nasser-Eddine Mohamed Ali
Ph.D. (2000)
University Badji Mokhtar
Professor

Dr. Tatar, Ahmet Emin
Ph.D. (2010)
Florida State University
Assistant Professor
Mathematics & Statistics Department (2010)

Dr. Tawabini, Bassam Shafiq
King Fahd University of Petroleum & Minerals
Associate Professor
Geosciences Department (2007)
Dr. Tawfiq, Hattan Zain
University of Pittsburgh
Assistant Professor
Mathematics & Statistics Department (1988)

Dr. Thompson, Mark Colin
Ph.D. (2012)
University of Exeter
Assistant Professor
General Studies Department (2012)

Dr. Tomar, Rakesh
Ph.D. (2008)
Lakshmibai National Institute of Physical Education
Lecturer
Physical Education Department (2009)

Dr. Toor, Ihsan-ul-Haq
Ph.D. (2008)
Korea Advanced Institute of Science &
Assistant Professor
Mechanical Engineering Department (2010)

Dr. Tufekcioglu, Ertan
Ph.D. (2008)
University of Marmara
Lecturer
Physical Education Department (2010)

Mr. Turbett, Blaise James Bernard
Bachelor (1979)
University of Ulster
Instructor
Preparatory English Program (2008)
Dr. Ullah, Nisar
Ph.D. (2001)
University of Graz
Associate Professor
Chemistry Department (2007)

Dr. Ulussever, Talat
University of Kansas
Assistant Professor
Finance & Economics Department (2007)

Mr. Unal, Lee
Master (2013)
Manchester University
Lecturer
English Language Department (2014)

Mr. Urrehman, Khateeb Kafil Fazal
Master (1999)
King Fahd University of Petroleum & Minerals
Lecturer
Physics Department (1995)

Dr. Uthman, Usamah Ahmad Abdulhakim
Ph.D. (1989)
University of Nebraska, Lincoln
Associate Professor
Finance & Economics Department (1981)
Dr. Vaqar, Sayyid Anas
Ph.D. (2011)
University of Waterloo
Assistant Professor
System Engineering Department (2012)

Dr. Vohra, Mohammad S.
Ph.D. (1998)
University of Maryland
Associate Professor
Civil Engineering Department (2003)

Mr. Watson, Paul Christopher
Master (2001)
School For International Training
Lecturer
Preparatory English Program (2012)

Dr. Wazeer, Mohamed Ismail M.
Ph.D. (1974)
University of East Anglia
Professor
Chemistry Department (1981)

Mr. Wick, Timothy
Bachelor (1997)
Trinity Christian College, USA
Instructor
Preparatory English Program (2014)

Dr. Wood, Warren W
Ph.D. (1969)
Michigan State University
Adjunct Professor
Geosciences Department (2009)
Mr. Yahya, Mohammad Garout
Master (1989)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1990)

Dr. Yamani, Zain Hassan Abdallah
Ph.D. (1999)
University of Illinois, Urbana-Champaign
Associate Professor
Physics Department (1991)

Mr. Yaqub, Mohammed Abdulrahim Allahdia
Master (1991)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1991)

Mr. Yazdani, Jaweed
Master (1988)
King Fahd University of Petroleum & Minerals
Lecturer
Information & Computer Science Department (1988)

Dr. Yilbas, Bekir Sami
Ph.D. (1981)
University of Birmingham
Professor
Mechanical Engineering Department (1992)

Dr. Yose, Kadrin
Ph.D. (2013)
ETH ZURICH, Switzerland
Assistant Professor
City & Regional Planning Department (2014)
Mr. Younas, Muhammad
Master (1984)
King Fahd University of Petroleum & Minerals
Lecturer
Mechanical Engineering Department (1984)

Dr. Yousuf, Muhammad
Ph.D. (2005)
University of Wisconsin, Milwaukee
Associate Professor

Dr. Yusha’u, Balarabe
Ph.D. (2005)
University of South Africa
Assistant Professor
Preparatory Math Program (1997)

Mr. Zafar-Ul-Malik, Muhammad
Master (2001)
Hamdard University
Lecturer
Preparatory Science & Engineering Program (2012)

Dr. Zaki, Shokri Selim Hassan
Ph.D. (1979)
Georgia Institute of Technology
Professor
System Engineering Department (1979)

Dr. Zaman, Fiazuddin
Ph.D. (1977)
Cranfield Institute of Technology
Professor
Mathematics & Statistics Department (1988)
Dr. Zami, Mohammad Sharif
Ph.D. (2009)
University of Salford
Assistant Professor
Architecture Department (2011)

Dr. Zerguine, Azzedine Mohamed Ali
Ph.D. (1996)
Loughborough University
Professor
Electrical Engineering Department (1990)

Dr. Zhioua, Sami Mohamed Mahmoud
Ph.D. (2008)
University of Laval, Quebec
Assistant Professor
Information & Computer Science Department (2009)

Dr. Zidouri, Abdelmalek Chikh
Tokyo Institute of Technology
Associate Professor
Electrical Engineering Department (1999)

Dr. Zubair, Syed Mohammad
Ph.D. (1985)
Georgia Institute of Technology
Professor
Mechanical Engineering Department (1986)

Dr. Zummo, Salam Adel Hassan
University of Michigan
Professor
Electrical Engineering Department (1998)