Q1. A transverse sinusoidal wave travelling on a string is given by: \(y(x,t) = 0.150 \sin(15.7 \, x - 50.3 \, t) \) (SI units). At a certain instant, point A is at the origin, and point B is the closest point to A along the x axis where the motion is 60.0° out of phase with the motion at A. What is the distance between points A and B?

A) 0.0667 m
B) 0.133 m
C) 0.267 m
D) 6.28 m
E) 3.14 m

Ans:

\[
\begin{align*}
360° \rightarrow \lambda & \Rightarrow d = \frac{60 \times \lambda}{360} = \frac{\lambda}{6} = \frac{1}{6} \left(\frac{2\pi}{k} \right) = \frac{\pi}{3k} \\
& = \frac{\pi}{(3)(15.7)} = 0.0667 \text{ m}
\end{align*}
\]

Q2. Two identical sound sources emit sound waves of wavelength \(\lambda \) and are separated by a distance \(d \). What is the lowest non-zero value of \(d \) for which constructive interference occurs everywhere along the line that passes through the two sources? Consider only points which do not lie between the two sources.

A) \(\lambda \)
B) \(\lambda/4 \)
C) \(2\lambda \)
D) \(\lambda/2 \)
E) \(4\lambda \)

Ans:

Consider point P:

\[
\Delta L = L_1 - L_2 = d
\]

Constructive interference: \(\Delta L = m\lambda \)

\[
\Rightarrow d = m\lambda = 0, \lambda, 2\lambda, ...
\]

Lowest (non-zero) value of \(d = \lambda \)
Q3. A 200-g ice cube at 0.0 °C is dropped into 350 g of water at 20 °C. What is the temperature of the mixture when it reaches thermal equilibrium?

A) 0.0 °C
B) –13 °C
C) +24 °C
D) –24 °C
E) +13 °C

Ans:

Heat to melt ice: \(Q_i = m_i L_f = 0.2 \times 333 = 66.6 \text{ kJ} \)

Heat gained from water: \(Q_w = m_w c_w \Delta T = 0.35 \times 4190 \times 20 = 29.3 \text{ kJ} \)

Since \(Q_w < Q_i \): ice will not melt completely

\(\Rightarrow T_f = 0 \text{ °C} \)

Q4. An ideal monatomic gas undergoes an isobaric process at a pressure of 80 kPa from an initial volume of 20 L to a final volume of 50 L. What is the change in the internal energy of the gas?

A) 3.6 kJ
B) 2.4 kJ
C) 4.0 kJ
D) 7.0 kJ
E) zero

Ans:

\[W = p \Delta V = nR \Delta T \]

\[Q = nC_p \Delta T = (n) \left(\frac{5}{2} R \right) (\Delta T) = \frac{5}{2} nR \Delta T = \frac{5}{2} p \Delta V \]

\[\Delta E_{\text{int}} = Q - W = \frac{3}{2} p \Delta V = 1.5 \times 8.0 \times 10^4 \times 30 \times 10^{-3} = 3.6 \text{ kJ} \]

Q5. Four moles of an ideal monatomic gas undergo a free expansion to twice the initial volume. What is the change in the entropy of the gas in the process?

A) 23 J/K
B) 29 J/K
C) 35 J/K
D) 17 J/K
E) 0

Ans:

\[\Delta S = \int \frac{dQ}{T} = \frac{1}{T} \int dQ = \frac{Q}{T} = \frac{W}{T} = \frac{nR T \ln(V_f/V_i)}{T} \]

\(\Rightarrow \Delta S = nR \ln(V_f/V_i) = 4 \times 8.31 \times \ln Z = 23 \text{ J/K} \)
Q6. An electron and a proton are fixed. The direction of the electric field halfway between the electron and the proton:

A) is toward the electron ✓
B) is toward the proton ×
C) cannot be determined because the field is zero ×
D) depends on the distance between the two particles ×
E) is perpendicular to the line joining the two particles ×

Q7. A conducting spherical shell has an outer radius of 0.75 m and a net charge of zero. A point charge q is placed at the center of the shell. The electric field just outside its surface is 992 N/C pointing radially toward the center of the sphere. What is the charge on the inner surface of the shell?

A) $+62 \text{ nC}$
B) -62 nC
C) $+31 \text{ nC}$
D) -31 nC
E) zero

Ans:

\vec{E}_{out} is due to the charge on the outer surface

$E_0 = \frac{kq_0}{R^2} \Rightarrow q_0 = \frac{E_0 R^2}{k} = \frac{(-992)(0.75)^2}{9.00 \times 10^9} = -62 \text{ nC}$

$q_{\text{net}} = q_{\text{in}} + q_0 \Rightarrow q_{\text{in}} = q_{\text{net}} - q_0 = 0 - (-62) = +62 \text{ nC}$

Q8. In a certain region of space, a uniform electric field is in the positive x direction. A particle with negative charge is moved from $x = 20 \text{ cm}$ to $x = 60 \text{ cm}$. Which of the following statements is CORRECT?

A) The potential energy of the charge increases. ✓
B) The potential energy of the charge decreases. ×
C) The potential energy of the charge remains the same. ×
D) The particle moves to a region of higher electric potential. ×
E) The particle moves to a point of the same electric potential. ×

Ans:

$\vec{E} = E\hat{i}, \Delta \vec{r} = 0.4 \hat{i}$

$\Delta V = -\vec{E} \cdot \Delta \vec{r} = -0.4E \Rightarrow \Delta V < 0$

$\Delta U = q_\Delta V \Rightarrow \Delta U > 0$

\downarrow

$(-) (-)$
Q9. Two electrons are initially far way from each other. They are projected toward each other, with each having a speed of 1.0×10^3 m/s. At what separation between the electrons will they momentarily stop?

A) 0.25 mm
B) 1.3 cm
C) 0.32 mm
D) 1.8 cm
E) 0.65 cm

Ans:

\[K_i + U_i = K_f + U_f \]

\[U_i = 0 \text{ (far away)}; \quad K_f = 0 \text{ (momentarily stop)} \]

\[\therefore U_f = K_i \Rightarrow \frac{ke^2}{r} = \frac{1}{2} mv_i^2 \]

\[\Rightarrow r = \frac{ke^2}{mv_i^2} = \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{9.11 \times 10^{-31} \times 1.0 \times 10^6} = 2.5 \times 10^{-4} \text{ m} = 0.25 \text{ mm} \]

Q10. For the combination of capacitors shown in **FIGURE 1**, what is the potential difference across the 4.0-µF capacitor?

A) 3.0 V
B) 6.0 V
C) 7.5 V
D) 9.0 V
E) 4.5 V

Ans:

\[C_{34} = \frac{C_3 \times C_4}{C_3 + C_4} = \frac{2 \times 4}{2 + 4} = \frac{4}{3} \mu F \]

\[Q_{34} = C_{34} \cdot V = \frac{4}{3} \times 9 = 12 \mu C \]

\[Q_{34} = Q_3 = Q_4 \]

\[\Rightarrow V_4 = \frac{Q_4}{C_4} = \frac{12}{4} = 3.0 \text{ V} \]
Q11. A 5.00-mV voltage is applied to a copper rod, initially at 20.0 °C, resulting in a current I_0. When the rod is heated to a temperature T_x, the current is reduced to $I_0/3$. If the temperature coefficient of resistivity of copper is $\alpha = 4.10 \times 10^{-3} \text{ K}^{-1}$, what is the temperature (T_x) of the rod? Assume that the dimensions of the rod do not change.

A) 508 °C
B) 488 °C
C) 60.0 °C
D) 6.70 °C
E) 20.0 °C

Ans:

$$I = \frac{V}{R} ; \quad I_0 = \frac{V}{R_0} ; \quad I_x = \frac{V}{R_x}$$

$$I_0 = \frac{V}{R_0} \cdot \frac{R_x}{R_0} \Rightarrow \frac{I_0}{I_0/3} = \frac{R_0(1 + \alpha \Delta T)}{R_0}$$

$$\Rightarrow 1 + \alpha \Delta T = 3 \Rightarrow \alpha \Delta T = 2 \Rightarrow \Delta T = \frac{2}{\alpha} = 488 \text{ °C}$$

∴ $T_F = T_0 + \Delta T = 508 \text{ °C}$

Q12. A copper (Cu) rod and an aluminum (Al) rod of the same length and different cross sectional areas are connected in series as shown in FIGURE 2. The resistivities and cross sectional areas are: $\rho_{Cu} = 1.69 \times 10^{-8} \text{ Ω.m}$, $\rho_{Al} = 2.75 \times 10^{-8} \text{ Ω.m}$, $A_{Al} = 0.400 \text{ cm}^2$ and $A_{Cu} = 0.200 \text{ cm}^2$. The ratio of the magnitude of the electric field along the aluminum rod to that along the copper rod (E_{Al}/E_{Cu}) is

A) 0.814
B) 3.25
C) 1.23
D) 1.00
E) 2.00

Ans:

$$E = \rho J = \frac{\rho I}{A}$$

$$\frac{E_{Al}}{E_{Cu}} = \frac{\rho_{Al} \cdot I}{A_{Al} \rho_{Al} \cdot I} = \frac{\rho_{Al} \cdot I}{A_{Al} \rho_{Cu} \cdot I} = \frac{\rho_{Cu} \cdot I}{A_{Cu} \cdot I}$$

$$= \frac{2.75}{1.69} \times \frac{0.2}{0.4} = 0.814$$
Q13. A 6.00-V ideal battery is used to power a device whose resistance is 200 Ω. If the battery can move a charge of 240 C, how long will it last?

A) 2.22 hours
B) 0.556 hours
C) 35.6 hours
D) 8.89 hours
E) 11.8 hours

Ans:
\[I = \frac{V}{R} = \frac{6}{200} = 0.03 \text{ A} \]
\[I = \frac{Q}{t} \Rightarrow t = \frac{Q}{I} = \frac{240}{0.03} = 8000 \text{ s} = 2.22 \text{ h} \]

Q14. A 0.20-A current flows through a metallic rod of length 1.0 m when connected to a 1.0-V battery. The rod is then cut into four identical pieces each having a length of 0.25 m, which are then connected in parallel to the same 1.0-V battery. The new current delivered by the battery is

A) 3.2 A
B) 0.40 A
C) 0.80 A
D) 0.050 A
E) 0.72 A

Ans:
\[R_0 = \frac{V}{I_0} = \frac{1.0}{0.20} = 5.0 \text{ Ω} \]
\[R_i = \frac{R_0}{4} = 1.25 \text{ Ω} \leftarrow \text{for each piece} \]
\[R_{eq} = \frac{R_i}{4} = \frac{1.25}{4} = 0.3125 \text{ Ω} \leftarrow \text{equivalent resistance} \]
\[\Rightarrow I_f = \frac{V}{R_{eq}} = \frac{1.0}{0.3125} = 3.2 \text{ A} \]
Q15. In the circuit of FIGURE 3, the current $I_1 = 3.0$ A. What is the value of current I_3?

![Fig3 diagram]

A) 5.0 A
B) 1.0 A
C) 13 A
D) 7.0 A
E) 6.0 A

Ans:

Consider the loop shown:

$+12 - (6 \times 3) + 3I_2 = 0$

$\Rightarrow I_2 = \frac{-12 + 18}{3} = +2.0$ A

* Consider the junction A:

$I_3 = I_1 + I_2$

$= 3 + 2 = 5.0$ A

Q16. A capacitor of capacitance C is connected to a 12-V battery, as shown in FIGURE 4. First, switch S_2 was open, and switch S_1 was closed until the capacitor is fully charged. Then, S_1 is open and S_2 is closed. If the voltage across the capacitor decays and reaches 6.0 V after 0.10 s, the capacitance C is equal to

![Fig4 diagram]

A) 24 μF
B) 11 μF
C) 14 μF
D) 140 μF
E) 47 μF

Ans:

Consider the discharging process:

$V_C = V_0 e^{-t/\tau} \Rightarrow e^{t/\tau} = \frac{V_0}{V}$

$\Rightarrow \frac{t}{\tau} = \ln\left(\frac{V_0}{V}\right) \Rightarrow \tau = \frac{t}{\ln\left(\frac{V_0}{V}\right)}$

$\Rightarrow RC = \frac{t}{\ln\left(\frac{V_0}{V}\right)}$

$\Rightarrow C = \frac{t}{R \ln\left(\frac{V_0}{V}\right)} = \frac{0.10}{6 \times 10^3} \times \frac{1}{\ln\left(\frac{12}{6}\right)} = 2.4 \times 10^{-5}$ F = 24 μF
Q17. **FIGURE 5** shows a portion of an electric circuit that includes a battery connected in series to a resistor of resistance R. Considering the variation of the electric potential along the circuit shown in the figure, which one of the following statements is **CORRECT**?

A) The current in R flows to the left and the positive terminal of the battery is at point 1. ✓
B) The current in R flows to the left and the positive terminal of the battery is at point 2. ×
C) The current in R flows to the right and the positive terminal of the battery is at point 1. ×
D) The current in R flows to the right and the positive terminal of the battery is at point 2. ×
E) The current is zero. ×

Q18. A positive charge q is moving with velocity \vec{v} in a uniform external magnetic field \vec{B}. The charge $\vec{F}_B = q \vec{v} \times \vec{B}$ experiences maximum magnetic force if

A) The direction of \vec{v} is perpendicular to the direction of \vec{B}. ✓
B) The direction of \vec{v} is the same as the direction of \vec{B}. ×
C) The direction of \vec{v} is opposite to the direction of \vec{B}. ×
D) The direction of \vec{v} makes an angle of 45° with the direction of \vec{B}. ×
E) The direction of \vec{v} makes an angle of 135° with the direction of \vec{B}. ×

Q19. A proton travels through both a uniform magnetic field \vec{B} and a uniform electric field \vec{E}. The magnetic field is given by $\vec{B} = 2.5\hat{i}$ (mT). At one instant, the velocity of the proton is $\vec{v} = 2.0 \times 10^3 \hat{j}$ (m/s) and the net force acting on it is zero. Find the electric field \vec{E} in units of V/m. Ignore the gravitational force on the proton.

A) $+5.0\hat{k}$
B) $-5.0\hat{k}$
C) $+5.0\hat{j}$
D) $-5.0\hat{j}$
E) $-5.0\hat{k} + 5.0\hat{j}$

Ans:

$$\vec{F}_{\text{net}} = \vec{F}_e + \vec{F}_B = 0 \Rightarrow \vec{F}_e + \vec{F}_B = -\vec{F}_e$$

$$q\vec{v} \times \vec{B} = -q\vec{E} \Rightarrow \vec{E} = -(\vec{v} \times \vec{B})$$

$$= -[(2\hat{j}) \times (2.5\hat{i})] \times 10^{-3} \times 10^3$$

$$= +5.0\hat{k} \ (V/m)$$
Q20. An electron of speed 2.0×10^7 m/s circles in a plane perpendicular to a uniform magnetic field. The radius of the orbit is 25 cm. The magnitude of the magnetic field is:

A) 4.6×10^{-4} T
B) 1.6×10^{-6} T
C) 6.3×10^{-6} T
D) 2.0×10^{-5} T
E) 3.2×10^{-4} T

Ans:

magnetic force = centripetal force

$$qvB = \frac{mv^2}{R} \Rightarrow B = \frac{mv}{qR}$$

$$= \frac{9.11 \times 10^{-31} \times 2 \times 10^7}{1.6 \times 10^{-19} \times 0.25} = 4.6 \times 10^{-4} \text{ T}$$

Q21. A 100-turn coil, in the shape of a right triangle, has two equal sides. A current of 3.0 A passes through the coil. A uniform external magnetic field of magnitude 1.0 T is perpendicular to the hypotenuse of the coil, as shown in **FIGURE 6**. Find the magnitude of the total magnetic force on the coil.

Ans:

Net magnetic force on a closed current loop in a uniform magnetic field is zero.
Q22. The coil in FIGURE 7 has its plane parallel to the xz plane, and carries current \(i = 1.0 \, \text{A} \) in the direction indicated. The coil has 8.0 turns and a cross sectional area of \(4.0 \times 10^{-3} \, \text{m}^2 \), and lies in an external uniform magnetic field that is given by \(\vec{B} = -2.0 \hat{i} \, \text{(mT)} \). Find the torque (in units of \(\mu \text{N.m} \)) on the coil due to the magnetic field \(\vec{B} \).

\[
\text{Ans:} \\
\vec{\mu} = Ni\vec{A} = 8 \times 1.0 \times 4.0 \times 10^{-3}(-\hat{j}) = -32 \times 10^{-3} \, \text{j (A.m}^2) \]
\[
\vec{\tau} = \vec{\mu} \times \vec{B} = (-32 \, \hat{j} \times -2 \, \hat{i}) \times 10^{-3} \times 10^{-3} = -64 \times 10^{-6} \, \hat{k} \, \text{(N.m)}
\]
\[
= -64 \, \hat{k} \, \text{(\mu N.m)}
\]

Q23. FIGURE 8 shows cross sections of two long straight wires. The left hand wire carries current \(i_1 = 5.0 \, \text{A} \), directed out of the page. In order to produce a zero net magnetic field at point P, what should be the current \(i_2 \)?

\[
\text{Ans:} \\
\vec{B}_1 \text{ is down} \therefore \vec{B}_2 \text{ must be up}
\Rightarrow i_2 \text{ must be into the page}
\]
\[
\text{For cancellation: } B_1 = B_2
\]
\[
\frac{\mu_0 i_1}{2\pi d} = \frac{\mu_0 i_2}{(2\pi)(2d)} \Rightarrow i_2 = 2i_1 = 10 \, \text{A}
\]
Q24. Three long parallel wires are arranged as shown in FIGURE 9, where \(d = 50 \text{ cm} \). The current into the page is \(i_1 = 3.0 \text{ A} \). The currents out of the page are \(i_2 = 0.25 \text{ A} \) and \(i_3 = 4.0 \text{ A} \). What is the magnitude of the net force per unit length acting on the wire carrying current \(i_2 \) due to the currents in the other wires?

\[
\text{A) } 7.0 \times 10^{-7} \text{ N/m} \\
\text{B) } 1.0 \times 10^{-7} \text{ N/m} \\
\text{C) } 1.8 \times 10^{-7} \text{ N/m} \\
\text{D) } 1.0 \times 10^{-6} \text{ N/m} \\
\text{E) } 2.4 \times 10^{-7} \text{ N/m}
\]

Ans:

The two forces are in the same direction.

\[
\therefore F_{\text{net}} = F_1 + F_3 = \frac{\mu_0 i_1 i_2 L}{2\pi d} + \frac{\mu_0 i_2 i_3 L}{2\pi d}
\]

\[
\therefore \text{Force per unit length} : f = \frac{\mu_0 i_2}{2\pi d} (i_1 + i_3) = \frac{4\pi \times 10^{-7} \times 0.25}{2\pi \times 0.5} (3 + 4)
\]

\[
= 7.0 \times 10^{-7} \text{ n/m}
\]

Q25. A long straight wire carrying a 3.0-\text{A} current enters a room through a window that is 2.0 m high and 1.5 m wide. The absolute value of the path integral \(\oint \vec{B} \cdot d\vec{s} \) around the window frame is

A) \(3.8 \times 10^{-6} \text{ T.m} \)

B) \(2.5 \times 10^{-7} \text{ T.m} \)

C) \(3.0 \times 10^{-7} \text{ T.m} \)

D) \(2.0 \times 10^{-7} \text{ T.m} \)

E) \(1.6 \times 10^{-5} \text{ T.m} \)

Ans:

\[
\oint \vec{B} \cdot d\vec{s} = \mu_0 z_{\text{enc}} = 4\pi \times 10^{-7} \times 3.0 = 3.8 \times 10^{-6} \text{ T.m}
\]
Q26. A current is set up in a wire loop that is formed as shown in FIGURE 10, where \(R_1 = 2.0 \) cm and \(R_2 = 4.0 \) cm. The loop carries a current of 5.0 A, as shown in the figure. What is the magnetic field at the center of the loop (C)?

A) \(3.9 \times 10^{-5} \) T out of the page
B) \(3.9 \times 10^{-5} \) T into the page
C) \(1.2 \times 10^{-4} \) T out of the page
D) \(1.2 \times 10^{-4} \) T into the page
E) \(7.9 \times 10^{-5} \) T into of the page

\[B_1 = \frac{\mu_0 i}{4\pi R_1} \rightarrow \text{out of the page} \]

\[B_2 = \frac{\mu_0 i}{4\pi R_2} \rightarrow \text{into the page} \]

\[B_1 > B_2 \text{ because } R_2 > R_1 \]

\[B_c = B_1 - B_2 = \frac{\mu_0 i}{4\pi} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

\[= \frac{4\pi \times 10^{-7} \times 5 \times \pi \left(\frac{1}{2} - \frac{1}{4} \right)}{4\pi} \times 10^2 = 3.9 \times 10^5 \, \text{T} \rightarrow \text{out of the page} \]

Q27. Two long wires are placed in the \(xy \) plane, as shown in FIGURE 11. Each wire carries a current of 1.5 A, directed out of the page. If the distance \(d = 3.0 \) m, what is the net magnetic field due to these wires at the origin?

\[\mathbf{B}_1 = \frac{\mu_0 i}{2\pi d} = \frac{4\pi \times 10^{-7} \times 1.5}{2\pi \times 3} = 1.0 \times 10^{-7} \, \text{T} = 0.1 \mu\text{T} \]

\[\mathbf{B}_2 \]
Q28. A conducting rectangular loop of wire is placed midway between two long straight parallel wires as shown in FIGURE 12. The wires carry currents i_1 and i_2, as indicated. If i_1 is increasing and i_2 is constant, then the induced current in the loop

A) is counterclockwise
B) is zero
C) is clockwise
D) depends on the value of $i_1 - i_2$
E) depends on the value of $i_1 + i_2$

Ans:
As i_1 increases, Φ_B increases into the page.
⇒ The induced current must produce a magnetic field that is out of the page.
⇒ Induced current must be counterclockwise.

Q29. A 10.0-m long copper wire, with a resistance of 5.00 Ω, is formed into a square loop and placed with its plane perpendicular to an external magnetic field that is increasing at the constant rate of 10.0 mT/s, at what rate is thermal energy generated in the loop?

A) 0.780 mW
B) 3.20 mW
C) 4.35 mW
D) 2.50 mW
E) 2.10 mW

Ans:
\[
\varepsilon = \frac{d\Phi_B}{dt} = \frac{d}{dt} (BA) = A \frac{dB}{dt}
\]
\[
P = \frac{\varepsilon^2}{R} = \frac{A^2}{R} \left(\frac{dB}{dt} \right)^2 = \frac{l^4}{R} \left(\frac{dB}{dt} \right)^2 = \frac{(2.5)^4}{5} \times (10 \times 10^{-3})^2
\]
\[
= 7.8 \times 10^{-4} \text{ W} = 0.780 \text{ mW}
\]
Q30. In FIGURE 13, a metal rod, of resistance 15 \(\Omega \), is forced to move with constant velocity along two parallel metal rails, connected with a metal strip at one end. The rod moves in a uniform magnetic field of magnitude 0.50 T that points directly out of the page. If the rails are separated by \(L = 25 \) cm, and the speed of the rod is 0.55 m/s, what is the current in the rod?

\[\text{Ans:} \]

The current must be up (clockwise) to reduce the flux.

\[\epsilon = B \cdot L \cdot v \]

\[i = \frac{\epsilon}{R} = \frac{B \cdot L \cdot v}{R} \]

\[= \frac{0.5 \times 0.25 \times 0.55}{15} \]

\[= 4.6 \text{ mA} \]